These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
164 related items for PubMed ID: 26072117
1. The role of temperature on Cr(VI) formation and reduction during heating of chromium-containing sludge in the presence of CaO. Mao L, Gao B, Deng N, Zhai J, Zhao Y, Li Q, Cui H. Chemosphere; 2015 Nov; 138():197-204. PubMed ID: 26072117 [Abstract] [Full Text] [Related]
2. Temperature dependent reduction of Cr(VI) to Cr(V) aroused by CaO during thermal treatment of solid waste containing Cr(VI). Mao L, Wang J, Zeng M, Zhang W, Hu L, Peng M. Chemosphere; 2021 Jan; 262():127924. PubMed ID: 32805661 [Abstract] [Full Text] [Related]
3. Heating temperature dependence of Cr(III) oxidation in the presence of alkali and alkaline earth salts and subsequent Cr(VI) leaching behavior. Verbinnen B, Billen P, Van Coninckxloo M, Vandecasteele C. Environ Sci Technol; 2013 Jun 04; 47(11):5858-63. PubMed ID: 23635007 [Abstract] [Full Text] [Related]
4. Effect of oxide interactions on chromium speciation transformation during simulated municipal solid waste incineration. Zhao G, Tian C, Wu P, Zhang X, Wang Z, Chen X, Xiong Z, Zhao Y, Zhang J. J Environ Sci (China); 2024 Aug 04; 142():11-20. PubMed ID: 38527877 [Abstract] [Full Text] [Related]
5. Effect of incineration temperature on chromium speciation in real chromium-rich tannery sludge under air atmosphere. Yang Y, Ma H, Chen X, Zhu C, Li X. Environ Res; 2020 Apr 04; 183():109159. PubMed ID: 32028182 [Abstract] [Full Text] [Related]
6. Incineration of tannery sludge under oxic and anoxic conditions: study of chromium speciation. Kavouras P, Pantazopoulou E, Varitis S, Vourlias G, Chrissafis K, Dimitrakopulos GP, Mitrakas M, Zouboulis AI, Karakostas T, Xenidis A. J Hazard Mater; 2015 Apr 04; 283():672-9. PubMed ID: 25464309 [Abstract] [Full Text] [Related]
7. Cr(VI) removal from a synthetic solution using a novel carbonaceous material prepared from oily sludge of tank bottom. Yang H, Li Z, Fu P, Zhang G. Environ Pollut; 2019 Jun 04; 249():843-850. PubMed ID: 30953946 [Abstract] [Full Text] [Related]
8. Oxidation reaction behavior of Cr-hosting spinels during heating of solid wastes containing Cr. Liu X, Jiang H, Wang J, Zhang W, Hu L, Peng M, Mao L. Sci Total Environ; 2021 Dec 15; 800():149634. PubMed ID: 34426319 [Abstract] [Full Text] [Related]
9. Oxidation and reduction reactions of (Al/FexCr1-x)2O3 caused by CaO during thermal treatment of solid waste containing Cr. Jiang H, Wang J, Zhang W, Hu L, Mao L. Environ Res; 2022 Mar 15; 204(Pt D):112356. PubMed ID: 34822857 [Abstract] [Full Text] [Related]
10. Oxidation behavior of Cr(III) during thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides. Mao L, Gao B, Deng N, Liu L, Cui H. Chemosphere; 2016 Feb 15; 145():1-9. PubMed ID: 26650573 [Abstract] [Full Text] [Related]
11. Thermal stabilization of chromium slag by sewage sludge: effects of sludge quantity and temperature. Wu C, Zhang H, He P, Shao L. J Environ Sci (China); 2010 Feb 15; 22(7):1110-5. PubMed ID: 21175004 [Abstract] [Full Text] [Related]
12. Effect of humic substance on thermal treatment of chromium(VI)-containing latosol soil. Wei YL, Hsieh HF. J Air Waste Manag Assoc; 2006 Mar 15; 56(3):350-5. PubMed ID: 16573198 [Abstract] [Full Text] [Related]
13. Use of synchrotron XANES and Cr-doped coal to further confirm the vaporization of organically bound Cr and the formation of chromium(VI) during coal oxy-fuel combustion. Chen J, Jiao F, Zhang L, Yao H, Ninomiya Y. Environ Sci Technol; 2012 Mar 20; 46(6):3567-73. PubMed ID: 22397359 [Abstract] [Full Text] [Related]
14. Inhibition of the nitrification process in activated sludge by trivalent and hexavalent chromium, and partitioning of hexavalent chromium between sludge compartments. Novotnik B, Zuliani T, Ščančar J, Milačič R. Chemosphere; 2014 Jun 20; 105():87-94. PubMed ID: 24462082 [Abstract] [Full Text] [Related]
15. A new pathway for hexavalent chromium formation in soil: Fire-induced alteration of iron oxides. Burton ED, Choppala G, Karimian N, Johnston SG. Environ Pollut; 2019 Apr 20; 247():618-625. PubMed ID: 30711817 [Abstract] [Full Text] [Related]
16. Extent of oxidation of Cr(III) to Cr(VI) under various conditions pertaining to natural environment. Apte AD, Tare V, Bose P. J Hazard Mater; 2006 Feb 06; 128(2-3):164-74. PubMed ID: 16297546 [Abstract] [Full Text] [Related]
17. Elucidating the mechanism of Cr(VI) formation upon the interaction with metal oxides during coal oxy-fuel combustion. Chen J, Jiao F, Zhang L, Yao H, Ninomiya Y. J Hazard Mater; 2013 Oct 15; 261():260-8. PubMed ID: 23969010 [Abstract] [Full Text] [Related]
18. Influence of elevated temperature on the species and mobility of chromium in ferrous sulfate-amended contaminated soil. Zhao R, Zhang X, Zhou Y, Li J, Guo B, Oyama K, Tokoro C. J Environ Manage; 2024 Apr 15; 356():120457. PubMed ID: 38503231 [Abstract] [Full Text] [Related]
19. Stabilizing Cr species in incinerator fly ashes with/without kaolin addition through a firing process: a molecular study on heated Cr. Wei YL, Wang HC, Peng YS. Environ Technol; 2017 Jul 15; 38(13-14):1644-1649. PubMed ID: 27710646 [Abstract] [Full Text] [Related]
20. Chromium(VI) formation via heating of Cr(III)-Fe(III)-(oxy)hydroxides: A pathway for fire-induced soil pollution. Burton ED, Choppala G, Vithana CL, Karimian N, Hockmann K, Johnston SG. Chemosphere; 2019 May 15; 222():440-444. PubMed ID: 30716546 [Abstract] [Full Text] [Related] Page: [Next] [New Search]