These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


696 related items for PubMed ID: 26073313

  • 1. Heterologously expressed Aspergillus aculeatus β-glucosidase in Saccharomyces cerevisiae is a cost-effective alternative to commercial supplementation of β-glucosidase in industrial ethanol production using Trichoderma reesei cellulases.
    Treebupachatsakul T, Nakazawa H, Shinbo H, Fujikawa H, Nagaiwa A, Ochiai N, Kawaguchi T, Nikaido M, Totani K, Shioya K, Shida Y, Morikawa Y, Ogasawara W, Okada H.
    J Biosci Bioeng; 2016 Jan; 121(1):27-35. PubMed ID: 26073313
    [Abstract] [Full Text] [Related]

  • 2. Utilization of recombinant Trichoderma reesei expressing Aspergillus aculeatus β-glucosidase I (JN11) for a more economical production of ethanol from lignocellulosic biomass.
    Treebupachatsakul T, Shioya K, Nakazawa H, Kawaguchi T, Morikawa Y, Shida Y, Ogasawara W, Okada H.
    J Biosci Bioeng; 2015 Dec; 120(6):657-65. PubMed ID: 26026380
    [Abstract] [Full Text] [Related]

  • 3. Trichoderma virens β-glucosidase I (BGLI) gene; expression in Saccharomyces cerevisiae including docking and molecular dynamics studies.
    Wickramasinghe GHIM, Rathnayake PPAMSI, Chandrasekharan NV, Weerasinghe MSS, Wijesundera RLC, Wijesundera WSS.
    BMC Microbiol; 2017 Jun 21; 17(1):137. PubMed ID: 28637443
    [Abstract] [Full Text] [Related]

  • 4. High β-glucosidase secretion in Saccharomyces cerevisiae improves the efficiency of cellulase hydrolysis and ethanol production in simultaneous saccharification and fermentation.
    Tang H, Hou J, Shen Y, Xu L, Yang H, Fang X, Bao X.
    J Microbiol Biotechnol; 2013 Nov 28; 23(11):1577-85. PubMed ID: 23928840
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. A β-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production.
    Li C, Lin F, Li Y, Wei W, Wang H, Qin L, Zhou Z, Li B, Wu F, Chen Z.
    Microb Cell Fact; 2016 Sep 01; 15(1):151. PubMed ID: 27585813
    [Abstract] [Full Text] [Related]

  • 8. Co-fermentation of cellulose/xylan using engineered industrial yeast strain OC-2 displaying both β-glucosidase and β-xylosidase.
    Saitoh S, Tanaka T, Kondo A.
    Appl Microbiol Biotechnol; 2011 Sep 01; 91(6):1553-9. PubMed ID: 21643701
    [Abstract] [Full Text] [Related]

  • 9. Construction of a recombinant Trichoderma reesei strain expressing Aspergillus aculeatus β-glucosidase 1 for efficient biomass conversion.
    Nakazawa H, Kawai T, Ida N, Shida Y, Kobayashi Y, Okada H, Tani S, Sumitani J, Kawaguchi T, Morikawa Y, Ogasawara W.
    Biotechnol Bioeng; 2012 Jan 01; 109(1):92-9. PubMed ID: 21830204
    [Abstract] [Full Text] [Related]

  • 10. Expression of three Trichoderma reesei cellulase genes in Saccharomyces pastorianus for the development of a two-step process of hydrolysis and fermentation of cellulose.
    Fitzpatrick J, Kricka W, James TC, Bond U.
    J Appl Microbiol; 2014 Jul 01; 117(1):96-108. PubMed ID: 24666670
    [Abstract] [Full Text] [Related]

  • 11. Overexpression of an exotic thermotolerant β-glucosidase in trichoderma reesei and its significant increase in cellulolytic activity and saccharification of barley straw.
    Dashtban M, Qin W.
    Microb Cell Fact; 2012 May 20; 11():63. PubMed ID: 22607229
    [Abstract] [Full Text] [Related]

  • 12. Optimization of cellulolytic enzyme components through engineering Trichoderma reesei and on-site fermentation using the soluble inducer for cellulosic ethanol production from corn stover.
    Li YH, Zhang XY, Zhang F, Peng LC, Zhang DB, Kondo A, Bai FW, Zhao XQ.
    Biotechnol Biofuels; 2018 May 20; 11():49. PubMed ID: 29483942
    [Abstract] [Full Text] [Related]

  • 13. Physiochemical and Thermodynamic Characterization of Highly Active Mutated Aspergillus niger β-glucosidase for Lignocellulose Hydrolysis.
    Javed MR, Rashid MH, Riaz M, Nadeem H, Qasim M, Ashiq N.
    Protein Pept Lett; 2018 May 20; 25(2):208-219. PubMed ID: 29384047
    [Abstract] [Full Text] [Related]

  • 14. Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme.
    Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A.
    Appl Environ Microbiol; 2004 Feb 20; 70(2):1207-12. PubMed ID: 14766607
    [Abstract] [Full Text] [Related]

  • 15. Ethanol production from cellulosic materials using cellulase-expressing yeast.
    Yanase S, Yamada R, Kaneko S, Noda H, Hasunuma T, Tanaka T, Ogino C, Fukuda H, Kondo A.
    Biotechnol J; 2010 May 20; 5(5):449-55. PubMed ID: 20349451
    [Abstract] [Full Text] [Related]

  • 16. Synergies in coupled hydrolysis and fermentation of cellulose using a Trichoderma reesei enzyme preparation and a recombinant Saccharomyces cerevisiae strain.
    Casa-Villegas M, Marín-Navarro J, Polaina J.
    World J Microbiol Biotechnol; 2017 Jul 20; 33(7):140. PubMed ID: 28589508
    [Abstract] [Full Text] [Related]

  • 17. Direct fermentation of amorphous cellulose to ethanol by engineered Saccharomyces cerevisiae coexpressing Trichoderma viride EG3 and BGL1.
    Gong Y, Tang G, Wang M, Li J, Xiao W, Lin J, Liu Z.
    J Gen Appl Microbiol; 2014 Jul 20; 60(5):198-206. PubMed ID: 25420425
    [Abstract] [Full Text] [Related]

  • 18. Cellulosic ethanol production by combination of cellulase-displaying yeast cells.
    Baek SH, Kim S, Lee K, Lee JK, Hahn JS.
    Enzyme Microb Technol; 2012 Dec 10; 51(6-7):366-72. PubMed ID: 23040393
    [Abstract] [Full Text] [Related]

  • 19. Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast.
    Hari Krishna S, Janardhan Reddy T, Chowdary GV.
    Bioresour Technol; 2001 Apr 10; 77(2):193-6. PubMed ID: 11272027
    [Abstract] [Full Text] [Related]

  • 20. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells.
    Sakamoto T, Hasunuma T, Hori Y, Yamada R, Kondo A.
    J Biotechnol; 2012 Apr 30; 158(4):203-10. PubMed ID: 21741417
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 35.