These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


274 related items for PubMed ID: 26075380

  • 21. A method for the quantification of low concentration sulfamethazine residues in milk based on molecularly imprinted clean-up and surface preconcentration at a Nafion-modified glassy carbon electrode.
    Guzmán-Vázquez de Prada A, Reviejo AJ, Pingarrón JM.
    J Pharm Biomed Anal; 2006 Feb 13; 40(2):281-6. PubMed ID: 16239091
    [Abstract] [Full Text] [Related]

  • 22. Efficient one-pot synthesis of molecularly imprinted silica nanospheres embedded carbon dots for fluorescent dopamine optosensing.
    Mao Y, Bao Y, Han D, Li F, Niu L.
    Biosens Bioelectron; 2012 Feb 13; 38(1):55-60. PubMed ID: 22672763
    [Abstract] [Full Text] [Related]

  • 23. Fluorescence sensor based on molecularly imprinted polymers and core-shell upconversion nanoparticles@metal-organic frameworks for detection of bovine serum albumin.
    Guo T, Deng Q, Fang G, Ma L, Wang S.
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct 15; 279():121460. PubMed ID: 35679742
    [Abstract] [Full Text] [Related]

  • 24. Determination of sulfonamides in bovine milk with column-switching high performance liquid chromatography using surface imprinted silica with hydrophilic external layer as restricted access and selective extraction material.
    Xu W, Su S, Jiang P, Wang H, Dong X, Zhang M.
    J Chromatogr A; 2010 Nov 12; 1217(46):7198-207. PubMed ID: 20934183
    [Abstract] [Full Text] [Related]

  • 25. Preparation of a stir bar coated with molecularly imprinted polymer and its application in analysis of dopamine in urine.
    Lei Y, Xu G, Wei F, Yang J, Hu Q.
    J Pharm Biomed Anal; 2014 Jun 12; 94():118-24. PubMed ID: 24561337
    [Abstract] [Full Text] [Related]

  • 26. One-pot synthesis of carbon dots-embedded molecularly imprinted polymer for specific recognition of sterigmatocystin in grains.
    Xu L, Fang G, Pan M, Wang X, Wang S.
    Biosens Bioelectron; 2016 Mar 15; 77():950-6. PubMed ID: 26544869
    [Abstract] [Full Text] [Related]

  • 27. Rational design of core-shell molecularly imprinted polymer based on computational simulation and Doehlert experimental optimization: application to the separation of tanshinone IIA from Salvia miltiorrhiza Bunge.
    Jia X, Li H, Luo J, Lu Q, Peng Y, Shi L, Liu L, Du S, Zhang G, Chen L.
    Anal Bioanal Chem; 2012 Jul 15; 403(9):2691-703. PubMed ID: 22576658
    [Abstract] [Full Text] [Related]

  • 28. Selective solid-phase extraction using molecular imprinted polymer sorbent for the analysis of florfenicol in food samples.
    Sadeghi S, Jahani M.
    Food Chem; 2013 Nov 15; 141(2):1242-51. PubMed ID: 23790909
    [Abstract] [Full Text] [Related]

  • 29. A multifunctional near-infrared fluorescent sensing material based on core-shell upconversion nanoparticles@magnetic nanoparticles and molecularly imprinted polymers for detection of deltamethrin.
    Guo T, Wang C, Zhou H, Zhang Y, Ma L.
    Mikrochim Acta; 2021 Apr 15; 188(5):165. PubMed ID: 33856578
    [Abstract] [Full Text] [Related]

  • 30. Development of a selective and sensitive voltammetric sensor for propylparaben based on a nanosized molecularly imprinted polymer-carbon paste electrode.
    Gholivand MB, Shamsipur M, Dehdashtian S, Rajabi HR.
    Mater Sci Eng C Mater Biol Appl; 2014 Mar 01; 36():102-7. PubMed ID: 24433892
    [Abstract] [Full Text] [Related]

  • 31. Enzyme-linked immunoassay based on imprinted microspheres for the detection of sulfamethazine residue.
    Peng D, Li Z, Wang Y, Liu Z, Sheng F, Yuan Z.
    J Chromatogr A; 2017 Jul 14; 1506():9-17. PubMed ID: 28545731
    [Abstract] [Full Text] [Related]

  • 32. Preparation and application of surface molecularly imprinted silica gel for selective extraction of melamine from milk samples.
    Cheng W, Liu Z, Wang Y.
    Talanta; 2013 Nov 15; 116():396-402. PubMed ID: 24148421
    [Abstract] [Full Text] [Related]

  • 33. Silicon nanoparticles coated with an epitope-imprinted polymer for fluorometric determination of cytochrome c.
    Zhang XM, Qin YP, Ye HL, Ma XT, He XW, Li WY, Zhang YK.
    Mikrochim Acta; 2018 Feb 13; 185(3):173. PubMed ID: 29594524
    [Abstract] [Full Text] [Related]

  • 34. Tuning of the vinyl groups' spacing at surface of modified silica in preparation of high density imprinted layer-coated silica nanoparticles: a dispersive solid-phase extraction materials for chlorpyrifos.
    Lu Q, Chen X, Nie L, Luo J, Jiang H, Chen L, Hu Q, Du S, Zhang Z.
    Talanta; 2010 May 15; 81(3):959-66. PubMed ID: 20298879
    [Abstract] [Full Text] [Related]

  • 35. A molecularly imprinted electrochemiluminescence sensor based on upconversion nanoparticles enhanced by electrodeposited rGO for selective and ultrasensitive detection of clenbuterol.
    Jin X, Fang G, Pan M, Yang Y, Bai X, Wang S.
    Biosens Bioelectron; 2018 Apr 15; 102():357-364. PubMed ID: 29172144
    [Abstract] [Full Text] [Related]

  • 36. Surface-enhanced Raman scattering based determination on sulfamethazine using molecularly imprinted polymers decorated with silver nanoparticles.
    Jiang GY, Liu L, Wan YQ, Li JK, Pi FW.
    Mikrochim Acta; 2023 Apr 04; 190(5):169. PubMed ID: 37016038
    [Abstract] [Full Text] [Related]

  • 37. Direct fluorimetric sensing of UV-excited analytes in biological and environmental samples using molecularly imprinted polymer nanoparticles and fluorescence polarization.
    Ton XA, Acha V, Haupt K, Tse Sum Bui B.
    Biosens Bioelectron; 2012 Apr 04; 36(1):22-8. PubMed ID: 22541891
    [Abstract] [Full Text] [Related]

  • 38. Luminescent core-shell imprinted nanoparticles engineered for targeted Förster resonance energy transfer-based sensing.
    Descalzo AB, Somoza C, Moreno-Bondi MC, Orellana G.
    Anal Chem; 2013 Jun 04; 85(11):5316-20. PubMed ID: 23675738
    [Abstract] [Full Text] [Related]

  • 39. Development and applications of molecularly imprinted polymers based on hydrophobic CdSe/ZnS quantum dots for optosensing of N(ε)-carboxymethyllysine in foods.
    Liu H, Wu D, Zhou K, Wang J, Sun B.
    Food Chem; 2016 Nov 15; 211():34-40. PubMed ID: 27283604
    [Abstract] [Full Text] [Related]

  • 40. Interaction of LiYF4:Yb3+/Er3+/Ho3+/Tm3+@LiYF4:Yb3+ upconversion nanoparticles, molecularly imprinted polymers, and templates.
    Chien HW, Tsai MT, Yang CH, Lee RH, Wang TL.
    RSC Adv; 2020 Sep 28; 10(59):35600-35610. PubMed ID: 35517120
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.