These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


601 related items for PubMed ID: 26083310

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures.
    Lee GH, Yu YJ, Cui X, Petrone N, Lee CH, Choi MS, Lee DY, Lee C, Yoo WJ, Watanabe K, Taniguchi T, Nuckolls C, Kim P, Hone J.
    ACS Nano; 2013 Sep 24; 7(9):7931-6. PubMed ID: 23924287
    [Abstract] [Full Text] [Related]

  • 4. Study of Graphene-based 2D-Heterostructure Device Fabricated by All-Dry Transfer Process.
    Tien DH, Park JY, Kim KB, Lee N, Choi T, Kim P, Taniguchi T, Watanabe K, Seo Y.
    ACS Appl Mater Interfaces; 2016 Feb 10; 8(5):3072-8. PubMed ID: 26771834
    [Abstract] [Full Text] [Related]

  • 5. Low-Voltage and High-Performance Multilayer MoS2 Field-Effect Transistors with Graphene Electrodes.
    Singh AK, Hwang C, Eom J.
    ACS Appl Mater Interfaces; 2016 Dec 21; 8(50):34699-34705. PubMed ID: 27998114
    [Abstract] [Full Text] [Related]

  • 6. Comparison of trapped charges and hysteresis behavior in hBN encapsulated single MoS2 flake based field effect transistors on SiO2 and hBN substrates.
    Lee C, Rathi S, Khan MA, Lim D, Kim Y, Yun SJ, Youn DH, Watanabe K, Taniguchi T, Kim GH.
    Nanotechnology; 2018 Aug 17; 29(33):335202. PubMed ID: 29786609
    [Abstract] [Full Text] [Related]

  • 7. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform.
    Cui X, Lee GH, Kim YD, Arefe G, Huang PY, Lee CH, Chenet DA, Zhang X, Wang L, Ye F, Pizzocchero F, Jessen BS, Watanabe K, Taniguchi T, Muller DA, Low T, Kim P, Hone J.
    Nat Nanotechnol; 2015 Jun 17; 10(6):534-40. PubMed ID: 25915194
    [Abstract] [Full Text] [Related]

  • 8. High-Performance Field-Effect Transistor and Logic Gates Based on GaS-MoS2 van der Waals Heterostructure.
    Shin GH, Lee GB, An ES, Park C, Jin HJ, Lee KJ, Oh DS, Kim JS, Choi YK, Choi SY.
    ACS Appl Mater Interfaces; 2020 Jan 29; 12(4):5106-5112. PubMed ID: 31898448
    [Abstract] [Full Text] [Related]

  • 9. Synthesis of hexagonal boron nitride heterostructures for 2D van der Waals electronics.
    Kim KK, Lee HS, Lee YH.
    Chem Soc Rev; 2018 Aug 13; 47(16):6342-6369. PubMed ID: 30043784
    [Abstract] [Full Text] [Related]

  • 10. Tunable Electron and Hole Injection Enabled by Atomically Thin Tunneling Layer for Improved Contact Resistance and Dual Channel Transport in MoS2/WSe2 van der Waals Heterostructure.
    Khan MA, Rathi S, Lee C, Lim D, Kim Y, Yun SJ, Youn DH, Kim GH.
    ACS Appl Mater Interfaces; 2018 Jul 18; 10(28):23961-23967. PubMed ID: 29938500
    [Abstract] [Full Text] [Related]

  • 11. Characterizing Defects Inside Hexagonal Boron Nitride Using Random Telegraph Signals in van der Waals 2D Transistors.
    Huang Z, Lee RG, Cuniberto E, Song J, Lee J, Alharbi A, Kisslinger K, Taniguchi T, Watanabe K, Kim YH, Shahrjerdi D.
    ACS Nano; 2024 Oct 22; 18(42):28700-28711. PubMed ID: 39340839
    [Abstract] [Full Text] [Related]

  • 12. Vertical and In-Plane Current Devices Using NbS2/n-MoS2 van der Waals Schottky Junction and Graphene Contact.
    Shin HG, Yoon HS, Kim JS, Kim M, Lim JY, Yu S, Park JH, Yi Y, Kim T, Jun SC, Im S.
    Nano Lett; 2018 Mar 14; 18(3):1937-1945. PubMed ID: 29400979
    [Abstract] [Full Text] [Related]

  • 13. SnSe/MoS2 van der Waals Heterostructure Junction Field-Effect Transistors with Nearly Ideal Subthreshold Slope.
    Guo J, Wang L, Yu Y, Wang P, Huang Y, Duan X.
    Adv Mater; 2019 Dec 14; 31(49):e1902962. PubMed ID: 31618496
    [Abstract] [Full Text] [Related]

  • 14. Quantum transport through MoS2 constrictions defined by photodoping.
    Epping A, Banszerus L, Güttinger J, Krückeberg L, Watanabe K, Taniguchi T, Hassler F, Beschoten B, Stampfer C.
    J Phys Condens Matter; 2018 May 23; 30(20):205001. PubMed ID: 29620021
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Metal Semiconductor Field-Effect Transistor with MoS2/Conducting NiO(x) van der Waals Schottky Interface for Intrinsic High Mobility and Photoswitching Speed.
    Lee HS, Baik SS, Lee K, Min SW, Jeon PJ, Kim JS, Choi K, Choi HJ, Kim JH, Im S.
    ACS Nano; 2015 Aug 25; 9(8):8312-20. PubMed ID: 26169189
    [Abstract] [Full Text] [Related]

  • 17. All 2D Heterostructure Tunnel Field-Effect Transistors: Impact of Band Alignment and Heterointerface Quality.
    Nakamura K, Nagamura N, Ueno K, Taniguchi T, Watanabe K, Nagashio K.
    ACS Appl Mater Interfaces; 2020 Nov 18; 12(46):51598-51606. PubMed ID: 33146991
    [Abstract] [Full Text] [Related]

  • 18. Atomic-scale etching of hexagonal boron nitride for device integration based on two-dimensional materials.
    Park H, Shin GH, Lee KJ, Choi SY.
    Nanoscale; 2018 Aug 16; 10(32):15205-15212. PubMed ID: 29808902
    [Abstract] [Full Text] [Related]

  • 19. Enhancement of Carrier Mobility in Multilayer InSe Transistors by van der Waals Integration.
    Li Z, Liu J, Ou H, Hu Y, Zhu J, Huang J, Liu H, Tu Y, Qi D, Hao Q, Zhang W.
    Nanomaterials (Basel); 2024 Feb 19; 14(4):. PubMed ID: 38392755
    [Abstract] [Full Text] [Related]

  • 20. Thermal History-Dependent Current Relaxation in hBN/MoS2 van der Waals Dimers.
    Ahmed T, Bellare P, Debnath R, Roy A, Ravishankar N, Ghosh A.
    ACS Nano; 2020 May 26; 14(5):5909-5916. PubMed ID: 32310636
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 31.