These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Altered A-type potassium channel function in the nucleus tractus solitarii in acquired temporal lobe epilepsy. Derera ID, Smith KC, Smith BN. J Neurophysiol; 2019 Jan 01; 121(1):177-187. PubMed ID: 30517061 [Abstract] [Full Text] [Related]
6. A voltage-dependent depolarization induced by low external glucose in neurons of the nucleus of the tractus solitarius: interaction with KATP channels. De Bernardis Murat C, Leão RM. J Physiol; 2019 May 01; 597(9):2515-2532. PubMed ID: 30927460 [Abstract] [Full Text] [Related]
7. Allopregnanolone Effects on Transmission in the Brain Stem Solitary Tract Nucleus (NTS). Kim S, Kim SM, Oh B, Tak J, Yang E, Jin YH. Neuroscience; 2018 May 21; 379():219-227. PubMed ID: 29604384 [Abstract] [Full Text] [Related]
9. Rapid inhibition of neural excitability in the nucleus tractus solitarii by leptin: implications for ingestive behaviour. Williams KW, Smith BN. J Physiol; 2006 Jun 01; 573(Pt 2):395-412. PubMed ID: 16581866 [Abstract] [Full Text] [Related]
10. Hypoglycemia-activated GLUT2 neurons of the nucleus tractus solitarius stimulate vagal activity and glucagon secretion. Lamy CM, Sanno H, Labouèbe G, Picard A, Magnan C, Chatton JY, Thorens B. Cell Metab; 2014 Mar 04; 19(3):527-38. PubMed ID: 24606905 [Abstract] [Full Text] [Related]
11. α-MSH exerts direct postsynaptic excitatory effects on NTS neurons and enhances GABAergic signaling in the NTS. Mimee A, Kuksis M, Ferguson AV. Neuroscience; 2014 Mar 14; 262():70-82. PubMed ID: 24370637 [Abstract] [Full Text] [Related]
12. Characterization of synapses in the rat subnucleus centralis of the nucleus tractus solitarius. Babic T, Ambler J, Browning KN, Travagli RA. J Neurophysiol; 2015 Jan 15; 113(2):466-74. PubMed ID: 25355962 [Abstract] [Full Text] [Related]
14. Substance P excites GABAergic neurons in the mouse central amygdala through neurokinin 1 receptor activation. Sosulina L, Strippel C, Romo-Parra H, Walter AL, Kanyshkova T, Sartori SB, Lange MD, Singewald N, Pape HC. J Neurophysiol; 2015 Oct 01; 114(4):2500-8. PubMed ID: 26334021 [Abstract] [Full Text] [Related]
15. Functional Neuroplasticity in the Nucleus Tractus Solitarius and Increased Risk of Sudden Death in Mice with Acquired Temporal Lobe Epilepsy. Derera ID, Delisle BP, Smith BN. eNeuro; 2017 Oct 01; 4(5):. PubMed ID: 29085908 [Abstract] [Full Text] [Related]
16. Selective enhancement of synaptic inhibition by hypocretin (orexin) in rat vagal motor neurons: implications for autonomic regulation. Davis SF, Williams KW, Xu W, Glatzer NR, Smith BN. J Neurosci; 2003 May 01; 23(9):3844-54. PubMed ID: 12736355 [Abstract] [Full Text] [Related]
17. Extensive Inhibitory Gating of Viscerosensory Signals by a Sparse Network of Somatostatin Neurons. Thek KR, Ong SJM, Carter DC, Bassi JK, Allen AM, McDougall SJ. J Neurosci; 2019 Oct 09; 39(41):8038-8050. PubMed ID: 31471471 [Abstract] [Full Text] [Related]
18. D-glucose modulates synaptic transmission from the central terminals of vagal afferent fibers. Wan S, Browning KN. Am J Physiol Gastrointest Liver Physiol; 2008 Mar 09; 294(3):G757-63. PubMed ID: 18202107 [Abstract] [Full Text] [Related]
19. High glucose increases action potential firing of catecholamine neurons in the nucleus of the solitary tract by increasing spontaneous glutamate inputs. Roberts BL, Zhu M, Zhao H, Dillon C, Appleyard SM. Am J Physiol Regul Integr Comp Physiol; 2017 Sep 01; 313(3):R229-R239. PubMed ID: 28615161 [Abstract] [Full Text] [Related]
20. Organization and properties of GABAergic neurons in solitary tract nucleus (NTS). Bailey TW, Appleyard SM, Jin YH, Andresen MC. J Neurophysiol; 2008 Apr 01; 99(4):1712-22. PubMed ID: 18272881 [Abstract] [Full Text] [Related] Page: [Next] [New Search]