These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Determination of green, blue and yellow artificial food colorants and their abuse in herb-coloured green Easter beers on tap. Stachová I, Lhotská I, Solich P, Šatínský D. Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2016 Jul; 33(7):1139-46. PubMed ID: 27295128 [Abstract] [Full Text] [Related]
23. Sensitive determination of quinoline yellow using poly (diallyldimethylammonium chloride) functionalized reduced graphene oxide modified grassy carbon electrode. Fu L, Zheng Y, Wang A, Cai W, Lin H. Food Chem; 2015 Aug 15; 181():127-32. PubMed ID: 25794730 [Abstract] [Full Text] [Related]
24. Electrochemical immunosensor for ultrasensitive detection of microcystin-LR based on graphene-gold nanocomposite/functional conducting polymer/gold nanoparticle/ionic liquid composite film with electrodeposition. Ruiyi L, Qianfang X, Zaijun L, Xiulan S, Junkang L. Biosens Bioelectron; 2013 Jun 15; 44():235-40. PubMed ID: 23434759 [Abstract] [Full Text] [Related]
25. Electrochemical fabrication of a novel ZnO/cysteic acid nanocomposite modified electrode and its application to simultaneous determination of sunset yellow and tartrazine. Dorraji PS, Jalali F. Food Chem; 2017 Jul 15; 227():73-77. PubMed ID: 28274460 [Abstract] [Full Text] [Related]
26. Determination of synthetic and natural colorants in selected green colored foodstuffs through reverse phase-high performance liquid chromatography. Mathiyalagan S, Mandal BK, Ling YC. Food Chem; 2019 Apr 25; 278():381-387. PubMed ID: 30583388 [Abstract] [Full Text] [Related]
28. Development of an ultrasensitive immunoassay for detecting tartrazine. Li Z, Song S, Xu L, Kuang H, Guo S, Xu C. Sensors (Basel); 2013 Jun 25; 13(7):8155-69. PubMed ID: 23799494 [Abstract] [Full Text] [Related]
30. Sensitive electrochemical detection of dopamine with a DNA/graphene bi-layer modified carbon ionic liquid electrode. Wang X, You Z, Sha H, Cheng Y, Zhu H, Sun W. Talanta; 2014 Oct 25; 128():373-8. PubMed ID: 25059174 [Abstract] [Full Text] [Related]
32. Electrochemical behavior of azithromycin at graphene and ionic liquid composite film modified electrode. Peng JY, Hou CT, Liu XX, Li HB, Hu XY. Talanta; 2011 Oct 30; 86():227-32. PubMed ID: 22063535 [Abstract] [Full Text] [Related]
33. Simultaneous electrochemical determination of guanosine and adenosine with graphene-ZrO2 nanocomposite modified carbon ionic liquid electrode. Sun W, Wang X, Sun X, Deng Y, Liu J, Lei B, Sun Z. Biosens Bioelectron; 2013 Jun 15; 44():146-51. PubMed ID: 23416316 [Abstract] [Full Text] [Related]
36. The potential of electrochemistry for one-pot and sensitive analysis of patent blue V, tartrazine, acid violet 7 and ponceau 4R in foodstuffs using IL/Cu-BTC MOF modified sensor. Darabi R, Shabani-Nooshabadi M, Karimi-Maleh H, Gholami A. Food Chem; 2022 Jan 30; 368():130811. PubMed ID: 34399177 [Abstract] [Full Text] [Related]
37. Pt nanoparticles/laser-engraved graphene-based integrated electrochemical platform for point-of-use determination of ponceau 4R, amaranth and tartrazine in food. Wang J, Wu J, Sun M, Bai J, Bo X. Food Chem; 2024 Mar 01; 435():137611. PubMed ID: 37806205 [Abstract] [Full Text] [Related]
40. Application of carbon nanotubes-ionic liquid hybrid in a sensitive atorvastatin ion-selective electrode. Jalali F, Ardeshiri M. Mater Sci Eng C Mater Biol Appl; 2016 Dec 01; 69():276-82. PubMed ID: 27612714 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]