These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


574 related items for PubMed ID: 26087481

  • 21. Biofunctionalized Conducting Polymer/Carbon Microfiber Electrodes for Ultrasensitive Neural Recordings.
    Vara H, Collazos-Castro JE.
    ACS Appl Mater Interfaces; 2015 Dec 09; 7(48):27016-26. PubMed ID: 26574911
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Poly(3,4-ethylenedioxythiophene) (PEDOT) polymer coatings facilitate smaller neural recording electrodes.
    Ludwig KA, Langhals NB, Joseph MD, Richardson-Burns SM, Hendricks JL, Kipke DR.
    J Neural Eng; 2011 Feb 09; 8(1):014001. PubMed ID: 21245527
    [Abstract] [Full Text] [Related]

  • 24. Long term performance of porous platinum coated neural electrodes.
    Leber M, Bhandari R, Mize J, Warren DJ, Shandhi MMH, Solzbacher F, Negi S.
    Biomed Microdevices; 2017 Sep 09; 19(3):62. PubMed ID: 28688070
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Poly (3, 4-ethylenedioxythiophene)-ionic liquid coating improves neural recording and stimulation functionality of MEAs.
    Du ZJ, Luo X, Weaver C, Cui XT.
    J Mater Chem C Mater; 2015 Jul 07; 3(25):6515-6524. PubMed ID: 26491540
    [Abstract] [Full Text] [Related]

  • 27. Biocompatible PEDOT:Nafion composite electrode coatings for selective detection of neurotransmitters in vivo.
    Vreeland RF, Atcherley CW, Russell WS, Xie JY, Lu D, Laude ND, Porreca F, Heien ML.
    Anal Chem; 2015 Mar 03; 87(5):2600-7. PubMed ID: 25692657
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Electropolymerized Poly(3,4-ethylenedioxythiophene) (PEDOT) Coatings for Implantable Deep-Brain-Stimulating Microelectrodes.
    Bodart C, Rossetti N, Hagler J, Chevreau P, Chhin D, Soavi F, Schougaard SB, Amzica F, Cicoira F.
    ACS Appl Mater Interfaces; 2019 May 15; 11(19):17226-17233. PubMed ID: 30978001
    [Abstract] [Full Text] [Related]

  • 30. Electrochemical deposition of conductive polymers onto magnesium microwires for neural electrode applications.
    Zhang C, Driver N, Tian Q, Jiang W, Liu H.
    J Biomed Mater Res A; 2018 Jul 15; 106(7):1887-1895. PubMed ID: 29520971
    [Abstract] [Full Text] [Related]

  • 31. Significant enhancement of PEDOT thin film adhesion to inorganic solid substrates with EDOT-acid.
    Wei B, Liu J, Ouyang L, Kuo CC, Martin DC.
    ACS Appl Mater Interfaces; 2015 Jul 22; 7(28):15388-94. PubMed ID: 26052833
    [Abstract] [Full Text] [Related]

  • 32. Hollow ring-like flexible electrode architecture enabling subcellular multi-directional neural interfacing.
    Vajrala VS, Elkhoury K, Pautot S, Bergaud C, Maziz A.
    Biosens Bioelectron; 2023 May 01; 227():115182. PubMed ID: 36870146
    [Abstract] [Full Text] [Related]

  • 33. Bionanotube/Poly(3,4-ethylenedioxythiophene) Nanohybrid as an Electrode for the Neural Interface and Dopamine Sensor.
    Reddy S, Xiao Q, Liu H, Li C, Chen S, Wang C, Chiu K, Chen N, Tu Y, Ramakrishna S, He L.
    ACS Appl Mater Interfaces; 2019 May 22; 11(20):18254-18267. PubMed ID: 31034196
    [Abstract] [Full Text] [Related]

  • 34. Durable scalable 3D SLA-printed cuff electrodes with high performance carbon + PEDOT:PSS-based contacts.
    Doering OM, Vetter C, Alhawwash A, Horn MR, Yoshida K.
    Artif Organs; 2022 Oct 22; 46(10):2085-2096. PubMed ID: 35971860
    [Abstract] [Full Text] [Related]

  • 35. Monolithic and Scalable Au Nanorod Substrates Improve PEDOT-Metal Adhesion and Stability in Neural Electrodes.
    Ganji M, Hossain L, Tanaka A, Thunemann M, Halgren E, Gilja V, Devor A, Dayeh SA.
    Adv Healthc Mater; 2018 Nov 22; 7(22):e1800923. PubMed ID: 30369088
    [Abstract] [Full Text] [Related]

  • 36. Poly (3,4-ethylenedioxythiophene) for chronic neural stimulation.
    Cui XT, Zhou DD.
    IEEE Trans Neural Syst Rehabil Eng; 2007 Dec 22; 15(4):502-8. PubMed ID: 18198707
    [Abstract] [Full Text] [Related]

  • 37. Design of adhesive conducting PEDOT-MeOH:PSS/PDA neural interface via electropolymerization for ultrasmall implantable neural microelectrodes.
    Tian F, Yu J, Wang W, Zhao D, Cao J, Zhao Q, Wang F, Yang H, Wu Z, Xu J, Lu B.
    J Colloid Interface Sci; 2023 May 15; 638():339-348. PubMed ID: 36746052
    [Abstract] [Full Text] [Related]

  • 38. Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes.
    Abidian MR, Martin DC.
    Biomaterials; 2008 Mar 15; 29(9):1273-83. PubMed ID: 18093644
    [Abstract] [Full Text] [Related]

  • 39. Poly(3,4-Ethylenedioxythiophene)/Functional Gold Nanoparticle films for Improving the Electrode-Neural Interface.
    Wu Y, Wang L, Yan M, Wang X, Liao X, Zhong C, Ke D, Lu Y.
    Adv Healthc Mater; 2024 Sep 15; 13(23):e2400836. PubMed ID: 38757738
    [Abstract] [Full Text] [Related]

  • 40. Probing the Impedance of a Biological Tissue with PEDOT:PSS-Coated Metal Electrodes: Effect of Electrode Size on Sensing Efficiency.
    Koutsouras DA, Lingstedt LV, Lieberth K, Reinholz J, Mailänder V, Blom PWM, Gkoupidenis P.
    Adv Healthc Mater; 2019 Dec 15; 8(23):e1901215. PubMed ID: 31701673
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 29.