These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
574 related items for PubMed ID: 26087481
61. PEDOT-CNT Composite Microelectrodes for Recording and Electrostimulation Applications: Fabrication, Morphology, and Electrical Properties. Gerwig R, Fuchsberger K, Schroeppel B, Link GS, Heusel G, Kraushaar U, Schuhmann W, Stett A, Stelzle M. Front Neuroeng; 2012; 5():8. PubMed ID: 22586394 [Abstract] [Full Text] [Related]
62. Physical behavior of PEDOT polymer electrode during magnetic resonance imaging and long-term test in the climate chamber. de Camp NV, Bergeler J, Seifert F. Sci Rep; 2023 Apr 10; 13(1):5826. PubMed ID: 37037876 [Abstract] [Full Text] [Related]
63. Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells. Richardson-Burns SM, Hendricks JL, Foster B, Povlich LK, Kim DH, Martin DC. Biomaterials; 2007 Mar 10; 28(8):1539-52. PubMed ID: 17169420 [Abstract] [Full Text] [Related]
66. Novel Carbon/PEDOT/PSS-Based Screen-Printed Biosensors for Acetylcholine Neurotransmitter and Acetylcholinesterase Detection in Human Serum. Ashmawy NH, Almehizia AA, Youssef TA, El-Galil E Amr A, Al-Omar MA, Kamel AH. Molecules; 2019 Apr 18; 24(8):. PubMed ID: 31003551 [Abstract] [Full Text] [Related]
67. Poly(3,4-ethylenedioxythiophene):GlycosAminoGlycan Aqueous Dispersions: Toward Electrically Conductive Bioactive Materials for Neural Interfaces. Mantione D, Del Agua I, Schaafsma W, Diez-Garcia J, Castro B, Sardon H, Mecerreyes D. Macromol Biosci; 2016 Aug 18; 16(8):1227-38. PubMed ID: 27168277 [Abstract] [Full Text] [Related]
74. Highly Stable Glassy Carbon Interfaces for Long-Term Neural Stimulation and Low-Noise Recording of Brain Activity. Vomero M, Castagnola E, Ciarpella F, Maggiolini E, Goshi N, Zucchini E, Carli S, Fadiga L, Kassegne S, Ricci D. Sci Rep; 2017 Jan 13; 7():40332. PubMed ID: 28084398 [Abstract] [Full Text] [Related]
75. Effects of carbon nanotube and conducting polymer coated microelectrodes on single-unit recordings in vitro. Charkhkar H, Knaack GL, Mandal HS, Keefer EW, Pancrazio JJ. Annu Int Conf IEEE Eng Med Biol Soc; 2014 Jan 13; 2014():469-73. PubMed ID: 25569998 [Abstract] [Full Text] [Related]
76. In vitro and in vivo evaluation of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate)/dopamine-coated electrodes for dopamine delivery. Sui L, Song XJ, Ren J, Cai WJ, Ju LH, Wang Y, Wang LY, Chen M. J Biomed Mater Res A; 2014 Jun 13; 102(6):1681-96. PubMed ID: 23776160 [Abstract] [Full Text] [Related]
77. A fully transparent, flexible PEDOT:PSS-ITO-Ag-ITO based microelectrode array for ECoG recording. Yang W, Gong Y, Yao CY, Shrestha M, Jia Y, Qiu Z, Fan QH, Weber A, Li W. Lab Chip; 2021 Mar 21; 21(6):1096-1108. PubMed ID: 33522526 [Abstract] [Full Text] [Related]
79. Actively controlled release of Dexamethasone from neural microelectrodes in a chronic in vivo study. Boehler C, Kleber C, Martini N, Xie Y, Dryg I, Stieglitz T, Hofmann UG, Asplund M. Biomaterials; 2017 Jun 21; 129():176-187. PubMed ID: 28343004 [Abstract] [Full Text] [Related]
80. Electrode modifications to lower electrode impedance and improve neural signal recording sensitivity. Chung T, Wang JQ, Wang J, Cao B, Li Y, Pang SW. J Neural Eng; 2015 Oct 21; 12(5):056018. PubMed ID: 26394650 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]