These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
767 related items for PubMed ID: 26092486
1. Nr2e1 regulates retinal lamination and the development of Müller glia, S-cones, and glycineric amacrine cells during retinogenesis. Corso-Díaz X, Simpson EM. Mol Brain; 2015 Jun 20; 8():37. PubMed ID: 26092486 [Abstract] [Full Text] [Related]
2. The circadian clock gene Bmal1 is required to control the timing of retinal neurogenesis and lamination of Müller glia in the mouse retina. Sawant OB, Jidigam VK, Fuller RD, Zucaro OF, Kpegba C, Yu M, Peachey NS, Rao S. FASEB J; 2019 Aug 20; 33(8):8745-8758. PubMed ID: 31002540 [Abstract] [Full Text] [Related]
3. Immunocytochemical analysis of misplaced rhodopsin-positive cells in the developing rodent retina. Szabó K, Szabó A, Enzsöly A, Szél A, Lukáts A. Cell Tissue Res; 2014 Apr 20; 356(1):49-63. PubMed ID: 24496510 [Abstract] [Full Text] [Related]
4. A molecular phenotype atlas of the zebrafish retina. Marc RE, Cameron D. J Neurocytol; 2001 Jul 20; 30(7):593-654. PubMed ID: 12118163 [Abstract] [Full Text] [Related]
5. Anisotropic Müller glial scaffolding supports a multiplex lattice mosaic of photoreceptors in zebrafish retina. Nagashima M, Hadidjojo J, Barthel LK, Lubensky DK, Raymond PA. Neural Dev; 2017 Nov 15; 12(1):20. PubMed ID: 29141686 [Abstract] [Full Text] [Related]
6. DCC is specifically required for the survival of retinal ganglion and displaced amacrine cells in the developing mouse retina. Shi M, Zheng MH, Liu ZR, Hu ZL, Huang Y, Chen JY, Zhao G, Han H, Ding YQ. Dev Biol; 2010 Dec 01; 348(1):87-96. PubMed ID: 20875817 [Abstract] [Full Text] [Related]
7. Lgr5⁺ amacrine cells possess regenerative potential in the retina of adult mice. Chen M, Tian S, Glasgow NG, Gibson G, Yang X, Shiber CE, Funderburgh J, Watkins S, Johnson JW, Schuman JS, Liu H. Aging Cell; 2015 Aug 01; 14(4):635-43. PubMed ID: 25990970 [Abstract] [Full Text] [Related]
8. Expression and localization of the cannabinoid receptor type 1 and the enzyme fatty acid amide hydrolase in the retina of vervet monkeys. Bouskila J, Burke MW, Zabouri N, Casanova C, Ptito M, Bouchard JF. Neuroscience; 2012 Jan 27; 202():117-30. PubMed ID: 22142900 [Abstract] [Full Text] [Related]
9. Cone-to-Müller cell ratio in the mammalian retina: A survey of seven mammals with different lifestyle. Lindenau W, Kuhrt H, Ulbricht E, Körner K, Bringmann A, Reichenbach A. Exp Eye Res; 2019 Apr 27; 181():38-48. PubMed ID: 30641045 [Abstract] [Full Text] [Related]
10. Sox2 regulates Müller glia reprogramming and proliferation in the regenerating zebrafish retina via Lin28 and Ascl1a. Gorsuch RA, Lahne M, Yarka CE, Petravick ME, Li J, Hyde DR. Exp Eye Res; 2017 Aug 27; 161():174-192. PubMed ID: 28577895 [Abstract] [Full Text] [Related]
11. Development of cholinergic amacrine cells is visual activity-dependent in the postnatal mouse retina. Zhang J, Yang Z, Wu SM. J Comp Neurol; 2005 Apr 11; 484(3):331-43. PubMed ID: 15739235 [Abstract] [Full Text] [Related]
12. DNA Damage Response in Proliferating Müller Glia in the Mammalian Retina. Nomura-Komoike K, Saitoh F, Komoike Y, Fujieda H. Invest Ophthalmol Vis Sci; 2016 Mar 11; 57(3):1169-82. PubMed ID: 26975029 [Abstract] [Full Text] [Related]
13. Lamina formation in the Mongolian gerbil retina (Meriones unguiculatus). Bytyqi AH, Layer PG. Anat Embryol (Berl); 2005 Feb 11; 209(3):217-25. PubMed ID: 15668778 [Abstract] [Full Text] [Related]
14. Differential effects of P2Y1 deletion on glial activation and survival of photoreceptors and amacrine cells in the ischemic mouse retina. Pannicke T, Frommherz I, Biedermann B, Wagner L, Sauer K, Ulbricht E, Härtig W, Krügel U, Ueberham U, Arendt T, Illes P, Bringmann A, Reichenbach A, Grosche A. Cell Death Dis; 2014 Jul 31; 5(7):e1353. PubMed ID: 25077539 [Abstract] [Full Text] [Related]
15. Ablation of Kcnj10 expression in retinal explants revealed pivotal roles for Kcnj10 in the proliferation and development of Müller glia. Arai E, Baba Y, Iwagawa T, Kuribayashi H, Mochizuki Y, Murakami A, Watanabe S. Mol Vis; 2015 Jul 31; 21():148-59. PubMed ID: 25684980 [Abstract] [Full Text] [Related]
16. Zac1 functions through TGFbetaII to negatively regulate cell number in the developing retina. Ma L, Cantrup R, Varrault A, Colak D, Klenin N, Götz M, McFarlane S, Journot L, Schuurmans C. Neural Dev; 2007 Jun 08; 2():11. PubMed ID: 17559664 [Abstract] [Full Text] [Related]
17. Neuronal and glial cell expression of angiotensin II type 1 (AT1) and type 2 (AT2) receptors in the rat retina. Downie LE, Vessey K, Miller A, Ward MM, Pianta MJ, Vingrys AJ, Wilkinson-Berka JL, Fletcher EL. Neuroscience; 2009 Jun 16; 161(1):195-213. PubMed ID: 19298848 [Abstract] [Full Text] [Related]
18. Dysregulated energy and protein homeostasis and the loss of GABAergic amacrine cells in aging retina. Zhou Y, Zhou W, Rao Y, He J, Huang Y, Zhao P, Li J. Exp Eye Res; 2024 Aug 16; 245():109985. PubMed ID: 38945518 [Abstract] [Full Text] [Related]
19. The role of Zhx2 transcription factor in bipolar cell differentiation during mouse retinal development. Kawamura Y, Yamanaka K, Poh B, Kuribayashi H, Koso H, Watanabe S. Biochem Biophys Res Commun; 2018 Sep 18; 503(4):3023-3030. PubMed ID: 30146259 [Abstract] [Full Text] [Related]
20. Sox2 plays a role in the induction of amacrine and Müller glial cells in mouse retinal progenitor cells. Lin YP, Ouchi Y, Satoh S, Watanabe S. Invest Ophthalmol Vis Sci; 2009 Jan 18; 50(1):68-74. PubMed ID: 18719084 [Abstract] [Full Text] [Related] Page: [Next] [New Search]