These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
113 related items for PubMed ID: 26098461
1. Subcellular Partitioning and Analysis of Gd3+-Loaded Ultrashort Single-Walled Carbon Nanotubes. Holt BD, Law JJ, Boyer PD, Wilson LJ, Dahl KN, Islam MF. ACS Appl Mater Interfaces; 2015 Jul 15; 7(27):14593-602. PubMed ID: 26098461 [Abstract] [Full Text] [Related]
2. Cellular uptake and imaging studies of gadolinium-loaded single-walled carbon nanotubes as MRI contrast agents. Tang AM, Ananta JS, Zhao H, Cisneros BT, Lam EY, Wong ST, Wilson LJ, Wong KK. Contrast Media Mol Imaging; 2011 Jul 15; 6(2):93-9. PubMed ID: 21504063 [Abstract] [Full Text] [Related]
3. Relaxivity enhancement of aquated Tris(β-diketonate)gadolinium(III) chelates by confinement within ultrashort single-walled carbon nanotubes. Law JJ, Guven A, Wilson LJ. Contrast Media Mol Imaging; 2014 Jul 15; 9(6):409-12. PubMed ID: 24764189 [Abstract] [Full Text] [Related]
4. Nanotechnology and MRI contrast enhancement. Matson ML, Wilson LJ. Future Med Chem; 2010 Mar 15; 2(3):491-502. PubMed ID: 21426177 [Abstract] [Full Text] [Related]
5. Carbon nanotubes for biomedical imaging: the recent advances. Gong H, Peng R, Liu Z. Adv Drug Deliv Rev; 2013 Dec 15; 65(15):1951-63. PubMed ID: 24184130 [Abstract] [Full Text] [Related]
6. Gadonanotubes as new high-performance MRI contrast agents. Sitharaman B, Wilson LJ. Int J Nanomedicine; 2006 Dec 15; 1(3):291-5. PubMed ID: 17717970 [Abstract] [Full Text] [Related]
7. Superparamagnetic gadonanotubes are high-performance MRI contrast agents. Sitharaman B, Kissell KR, Hartman KB, Tran LA, Baikalov A, Rusakova I, Sun Y, Khant HA, Ludtke SJ, Chiu W, Laus S, Tóth E, Helm L, Merbach AE, Wilson LJ. Chem Commun (Camb); 2005 Aug 21; (31):3915-7. PubMed ID: 16075070 [Abstract] [Full Text] [Related]
8. The use of gadolinium-carbon nanostructures to magnetically enhance stem cell retention for cellular cardiomyoplasty. Tran LA, Hernández-Rivera M, Berlin AN, Zheng Y, Sampaio L, Bové C, Cabreira-Hansen Mda G, Willerson JT, Perin EC, Wilson LJ. Biomaterials; 2014 Jan 21; 35(2):720-6. PubMed ID: 24148239 [Abstract] [Full Text] [Related]
9. Encapsulated gadolinium and dysprosium ions within ultra-short carbon nanotubes for MR microscopy at 11.75 and 21.1 T. Rosenberg JT, Cisneros BT, Matson M, Sokoll M, Sachi-Kocher A, Bejarano FC, Wilson LJ, Grant SC. Contrast Media Mol Imaging; 2014 Jan 21; 9(1):92-9. PubMed ID: 24470298 [Abstract] [Full Text] [Related]
10. A New High-Performance Gadonanotube-Polymer Hybrid Material for Stem Cell Labeling and Tracking by MRI. Moghaddam SE, Hernández-Rivera M, Zaibaq NG, Ajala A, da Graça Cabreira-Hansen M, Mowlazadeh-Haghighi S, Willerson JT, Perin EC, Muthupillai R, Wilson LJ. Contrast Media Mol Imaging; 2018 Jan 21; 2018():2853736. PubMed ID: 30116161 [Abstract] [Full Text] [Related]
11. Encapsulation of α-Particle-Emitting 225Ac3+ Ions Within Carbon Nanotubes. Matson ML, Villa CH, Ananta JS, Law JJ, Scheinberg DA, Wilson LJ. J Nucl Med; 2015 Jun 21; 56(6):897-900. PubMed ID: 25931476 [Abstract] [Full Text] [Related]
12. Cytotoxicity, cytocompatibility, cell-labeling efficiency, and in vitro cellular magnetic resonance imaging of gadolinium-catalyzed single-walled carbon nanotubes. Avti PK, Caparelli ED, Sitharaman B. J Biomed Mater Res A; 2013 Dec 21; 101(12):3580-91. PubMed ID: 23686792 [Abstract] [Full Text] [Related]
13. Diameter-dependent release of a cisplatin pro-drug from small and large functionalized carbon nanotubes. Muzi L, Ménard-Moyon C, Russier J, Li J, Chin CF, Ang WH, Pastorin G, Risuleo G, Bianco A. Nanoscale; 2015 Mar 12; 7(12):5383-94. PubMed ID: 25727105 [Abstract] [Full Text] [Related]
14. Magnetic resonance imaging studies on gadonanotube-reinforced biodegradable polymer nanocomposites. Sitharaman B, Van Der Zande M, Ananta JS, Shi X, Veltien A, Walboomers XF, Wilson LJ, Mikos AG, Heerschap A, Jansen JA. J Biomed Mater Res A; 2010 Jun 15; 93(4):1454-62. PubMed ID: 19927368 [Abstract] [Full Text] [Related]
15. Enhanced MRI relaxivity of aquated Gd3+ ions by carboxyphenylated water-dispersed graphene nanoribbons. Gizzatov A, Keshishian V, Guven A, Dimiev AM, Qu F, Muthupillai R, Decuzzi P, Bryant RG, Tour JM, Wilson LJ. Nanoscale; 2014 Mar 21; 6(6):3059-63. PubMed ID: 24504060 [Abstract] [Full Text] [Related]
16. Three-dimensional tracking of carbon nanotubes within living cells. Reuel NF, Dupont A, Thouvenin O, Lamb DC, Strano MS. ACS Nano; 2012 Jun 26; 6(6):5420-8. PubMed ID: 22624495 [Abstract] [Full Text] [Related]
18. Carbon materials as new nanovehicles in hot-melt drug deposition. Bielicka A, Wiśniewski M, Terzyk AP, Gauden PA, Furmaniak S, Roszek K, Kowalczyk P, Bieniek A. J Phys Condens Matter; 2013 Sep 04; 25(35):355002. PubMed ID: 23860420 [Abstract] [Full Text] [Related]
19. A novel gadolinium-based trimetasphere metallofullerene for application as a magnetic resonance imaging contrast agent. Adiseshaiah P, Dellinger A, MacFarland D, Stern S, Dobrovolskaia M, Ileva L, Patri AK, Bernardo M, Brooks DB, Zhou Z, McNeil S, Kepley C. Invest Radiol; 2013 Nov 04; 48(11):745-54. PubMed ID: 23748228 [Abstract] [Full Text] [Related]
20. Hyaluronic acid-functionalized single-walled carbon nanotubes as tumor-targeting MRI contrast agent. Hou L, Zhang H, Wang Y, Wang L, Yang X, Zhang Z. Int J Nanomedicine; 2015 Nov 04; 10():4507-20. PubMed ID: 26213465 [Abstract] [Full Text] [Related] Page: [Next] [New Search]