These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
168 related items for PubMed ID: 26101940
1. Organic Solvent-Free, One-Step Engineering of Graphene-Based Magnetic-Responsive Hybrids Using Design of Experiment-Driven Mechanochemistry. Mei KC, Guo Y, Bai J, Costa PM, Kafa H, Protti A, Hider RC, Al-Jamal KT. ACS Appl Mater Interfaces; 2015 Jul 08; 7(26):14176-81. PubMed ID: 26101940 [Abstract] [Full Text] [Related]
2. Systematic Assessment of the Toxicity and Potential Mechanism of Graphene Derivatives In Vitro and In Vivo. Li J, Zhang X, Jiang J, Wang Y, Jiang H, Zhang J, Nie X, Liu B. Toxicol Sci; 2019 Jan 01; 167(1):269-281. PubMed ID: 30239936 [Abstract] [Full Text] [Related]
3. Preparation of hollow core/shell Fe3O4@graphene oxide composites as magnetic targeting drug nanocarriers. Wang J, Fang J, Fang P, Li X, Wu S, Zhang W, Li S. J Biomater Sci Polym Ed; 2017 Mar 01; 28(4):337-349. PubMed ID: 27931160 [Abstract] [Full Text] [Related]
4. Multifunctional graphene oxide/iron oxide nanoparticles for magnetic targeted drug delivery dual magnetic resonance/fluorescence imaging and cancer sensing. Gonzalez-Rodriguez R, Campbell E, Naumov A. PLoS One; 2019 Mar 01; 14(6):e0217072. PubMed ID: 31170197 [Abstract] [Full Text] [Related]
5. Assessing biocompatibility of graphene oxide-based nanocarriers: A review. Kiew SF, Kiew LV, Lee HB, Imae T, Chung LY. J Control Release; 2016 Mar 28; 226():217-28. PubMed ID: 26873333 [Abstract] [Full Text] [Related]
6. Uniform ultrasmall graphene oxide nanosheets with low cytotoxicity and high cellular uptake. Zhang H, Peng C, Yang J, Lv M, Liu R, He D, Fan C, Huang Q. ACS Appl Mater Interfaces; 2013 Mar 13; 5(5):1761-7. PubMed ID: 23402618 [Abstract] [Full Text] [Related]
7. Recent Advances of Graphene-based Hybrids with Magnetic Nanoparticles for Biomedical Applications. Alegret N, Criado A, Prato M. Curr Med Chem; 2017 Mar 13; 24(5):529-536. PubMed ID: 27993110 [Abstract] [Full Text] [Related]
8. Enhanced green fluorescent protein-mediated synthesis of biocompatible graphene. Gurunathan S, Woong Han J, Kim E, Kwon DN, Park JK, Kim JH. J Nanobiotechnology; 2014 Oct 03; 12():41. PubMed ID: 25273520 [Abstract] [Full Text] [Related]
9. Green chemistry approach for the synthesis of biocompatible graphene. Gurunathan S, Han JW, Kim JH. Int J Nanomedicine; 2013 Oct 03; 8():2719-32. PubMed ID: 23940417 [Abstract] [Full Text] [Related]
10. Ginkgo biloba: a natural reducing agent for the synthesis of cytocompatible graphene. Gurunathan S, Han JW, Park JH, Eppakayala V, Kim JH. Int J Nanomedicine; 2014 Oct 03; 9():363-77. PubMed ID: 24453487 [Abstract] [Full Text] [Related]
11. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Liu J, Cui L, Losic D. Acta Biomater; 2013 Dec 03; 9(12):9243-57. PubMed ID: 23958782 [Abstract] [Full Text] [Related]
12. Nitric oxide delivery by core/shell superparamagnetic nanoparticle vehicles with enhanced biocompatibility. Zhang XF, Mansouri S, Mbeh DA, Yahia L, Sacher E, Veres T. Langmuir; 2012 Sep 04; 28(35):12879-85. PubMed ID: 22892047 [Abstract] [Full Text] [Related]
13. Folate-modified Graphene Oxide as the Drug Delivery System to Load Temozolomide. Wang LH, Liu JY, Sui L, Zhao PH, Ma HD, Wei Z, Wang YL. Curr Pharm Biotechnol; 2020 Sep 04; 21(11):1088-1098. PubMed ID: 32101121 [Abstract] [Full Text] [Related]
14. Solvent-Free Click-Mechanochemistry for the Preparation of Cancer Cell Targeting Graphene Oxide. Rubio N, Mei KC, Klippstein R, Costa PM, Hodgins N, Wang JT, Festy F, Abbate V, Hider RC, Chan KL, Al-Jamal KT. ACS Appl Mater Interfaces; 2015 Sep 02; 7(34):18920-3. PubMed ID: 26278410 [Abstract] [Full Text] [Related]
15. Graphene oxide-based magnetic fluorescent hybrids for drug delivery and cellular imaging. Gao Y, Zou X, Zhao JX, Li Y, Su X. Colloids Surf B Biointerfaces; 2013 Dec 01; 112():128-33. PubMed ID: 23973670 [Abstract] [Full Text] [Related]
16. Simple preparation of maltose-functionalized dendrimer/graphene quantum dots as a pH-sensitive biocompatible carrier for targeted delivery of doxorubicin. Karimi S, Namazi H. Int J Biol Macromol; 2020 Aug 01; 156():648-659. PubMed ID: 32289413 [Abstract] [Full Text] [Related]
17. Metal Free Graphene Oxide (GO) Nanosheets and Pristine-Single Wall Carbon Nanotubes (p-SWCNTs) Biocompatibility Investigation: A Comparative Study in Different Human Cell Lines. Valentini F, Mari E, Zicari A, Calcaterra A, Talamo M, Scioli MG, Orlandi A, Mardente S. Int J Mol Sci; 2018 Apr 28; 19(5):. PubMed ID: 29710799 [Abstract] [Full Text] [Related]
18. Prospects and challenges of graphene in biomedical applications. Bitounis D, Ali-Boucetta H, Hong BH, Min DH, Kostarelos K. Adv Mater; 2013 Apr 24; 25(16):2258-68. PubMed ID: 23494834 [Abstract] [Full Text] [Related]
19. Natural and synthetic polymer for graphene oxide mediated anticancer drug delivery-A comparative study. Deb A, R V. Int J Biol Macromol; 2018 Feb 24; 107(Pt B):2320-2333. PubMed ID: 29055699 [Abstract] [Full Text] [Related]
20. Graphene oxide stabilized by PLA-PEG copolymers for the controlled delivery of paclitaxel. Angelopoulou A, Voulgari E, Diamanti EK, Gournis D, Avgoustakis K. Eur J Pharm Biopharm; 2015 Jun 24; 93():18-26. PubMed ID: 25817600 [Abstract] [Full Text] [Related] Page: [Next] [New Search]