These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


536 related items for PubMed ID: 26104416

  • 1. Human-induced pluripotent stem cells generated from intervertebral disc cells improve neurologic functions in spinal cord injury.
    Oh J, Lee KI, Kim HT, You Y, Yoon DH, Song KY, Cheong E, Ha Y, Hwang DY.
    Stem Cell Res Ther; 2015 Jun 24; 6(1):125. PubMed ID: 26104416
    [Abstract] [Full Text] [Related]

  • 2. Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitor Cells Do Not Promote Functional Recovery of Pharmacologically Immunosuppressed Mice With Contusion Spinal Cord Injury.
    Pomeshchik Y, Puttonen KA, Kidin I, Ruponen M, Lehtonen S, Malm T, Åkesson E, Hovatta O, Koistinaho J.
    Cell Transplant; 2015 Jun 24; 24(9):1799-812. PubMed ID: 25203632
    [Abstract] [Full Text] [Related]

  • 3. Effects of the Post-Spinal Cord Injury Microenvironment on the Differentiation Capacity of Human Neural Stem Cells Derived from Induced Pluripotent Stem Cells.
    López-Serrano C, Torres-Espín A, Hernández J, Alvarez-Palomo AB, Requena J, Gasull X, Edel MJ, Navarro X.
    Cell Transplant; 2016 Oct 24; 25(10):1833-1852. PubMed ID: 27075820
    [Abstract] [Full Text] [Related]

  • 4. Beneficial Effect of Human Induced Pluripotent Stem Cell-Derived Neural Precursors in Spinal Cord Injury Repair.
    Romanyuk N, Amemori T, Turnovcova K, Prochazka P, Onteniente B, Sykova E, Jendelova P.
    Cell Transplant; 2015 Oct 24; 24(9):1781-97. PubMed ID: 25259685
    [Abstract] [Full Text] [Related]

  • 5. Applications of induced pluripotent stem cell technologies in spinal cord injury.
    Nagoshi N, Okano H.
    J Neurochem; 2017 Jun 24; 141(6):848-860. PubMed ID: 28199003
    [Abstract] [Full Text] [Related]

  • 6. Cell therapy for spinal cord injury by using human iPSC-derived region-specific neural progenitor cells.
    Kajikawa K, Imaizumi K, Shinozaki M, Shibata S, Shindo T, Kitagawa T, Shibata R, Kamata Y, Kojima K, Nagoshi N, Matsumoto M, Nakamura M, Okano H.
    Mol Brain; 2020 Sep 03; 13(1):120. PubMed ID: 32883317
    [Abstract] [Full Text] [Related]

  • 7. Human neural progenitors derived from integration-free iPSCs for SCI therapy.
    Liu Y, Zheng Y, Li S, Xue H, Schmitt K, Hergenroeder GW, Wu J, Zhang Y, Kim DH, Cao Q.
    Stem Cell Res; 2017 Mar 03; 19():55-64. PubMed ID: 28073086
    [Abstract] [Full Text] [Related]

  • 8. iPSC-derived neural precursor cells: potential for cell transplantation therapy in spinal cord injury.
    Nagoshi N, Okano H.
    Cell Mol Life Sci; 2018 Mar 03; 75(6):989-1000. PubMed ID: 28993834
    [Abstract] [Full Text] [Related]

  • 9. Self-assembling peptides optimize the post-traumatic milieu and synergistically enhance the effects of neural stem cell therapy after cervical spinal cord injury.
    Zweckberger K, Ahuja CS, Liu Y, Wang J, Fehlings MG.
    Acta Biomater; 2016 Sep 15; 42():77-89. PubMed ID: 27296842
    [Abstract] [Full Text] [Related]

  • 10. Human Spinal Oligodendrogenic Neural Progenitor Cells Promote Functional Recovery After Spinal Cord Injury by Axonal Remyelination and Tissue Sparing.
    Nagoshi N, Khazaei M, Ahlfors JE, Ahuja CS, Nori S, Wang J, Shibata S, Fehlings MG.
    Stem Cells Transl Med; 2018 Nov 15; 7(11):806-818. PubMed ID: 30085415
    [Abstract] [Full Text] [Related]

  • 11. Transplantation of human urine-derived neural progenitor cells after spinal cord injury in rats.
    Liu A, Kang S, Yu P, Shi L, Zhou L.
    Neurosci Lett; 2020 Sep 14; 735():135201. PubMed ID: 32585253
    [Abstract] [Full Text] [Related]

  • 12. Survival of syngeneic and allogeneic iPSC-derived neural precursors after spinal grafting in minipigs.
    Strnadel J, Carromeu C, Bardy C, Navarro M, Platoshyn O, Glud AN, Marsala S, Kafka J, Miyanohara A, Kato T, Tadokoro T, Hefferan MP, Kamizato K, Yoshizumi T, Juhas S, Juhasova J, Ho CS, Kheradmand T, Chen P, Bohaciakova D, Hruska-Plochan M, Todd AJ, Driscoll SP, Glenn TD, Pfaff SL, Klima J, Ciacci J, Curtis E, Gage FH, Bui J, Yamada K, Muotri AR, Marsala M.
    Sci Transl Med; 2018 May 09; 10(440):. PubMed ID: 29743351
    [Abstract] [Full Text] [Related]

  • 13. Human induced pluripotent stem cell-derived neural stem cells survive, migrate, differentiate, and improve neurologic function in a rat model of middle cerebral artery occlusion.
    Yuan T, Liao W, Feng NH, Lou YL, Niu X, Zhang AJ, Wang Y, Deng ZF.
    Stem Cell Res Ther; 2013 Jun 14; 4(3):73. PubMed ID: 23769173
    [Abstract] [Full Text] [Related]

  • 14. Neural stem cell mediated recovery is enhanced by Chondroitinase ABC pretreatment in chronic cervical spinal cord injury.
    Suzuki H, Ahuja CS, Salewski RP, Li L, Satkunendrarajah K, Nagoshi N, Shibata S, Fehlings MG.
    PLoS One; 2017 Jun 14; 12(8):e0182339. PubMed ID: 28771534
    [Abstract] [Full Text] [Related]

  • 15. Intrathecal Transplantation of Embryonic Stem Cell-Derived Spinal GABAergic Neural Precursor Cells Attenuates Neuropathic Pain in a Spinal Cord Injury Rat Model.
    Hwang I, Hahm SC, Choi KA, Park SH, Jeong H, Yea JH, Kim J, Hong S.
    Cell Transplant; 2016 Jun 14; 25(3):593-607. PubMed ID: 26407027
    [Abstract] [Full Text] [Related]

  • 16. Neuroprotective effects of human spinal cord-derived neural precursor cells after transplantation to the injured spinal cord.
    Emgård M, Piao J, Aineskog H, Liu J, Calzarossa C, Odeberg J, Holmberg L, Samuelsson EB, Bezubik B, Vincent PH, Falci SP, Seiger Å, Åkesson E, Sundström E.
    Exp Neurol; 2014 Mar 14; 253():138-45. PubMed ID: 24412492
    [Abstract] [Full Text] [Related]

  • 17. Recent Progress in the Regeneration of Spinal Cord Injuries by Induced Pluripotent Stem Cells.
    Csobonyeiova M, Polak S, Zamborsky R, Danisovic L.
    Int J Mol Sci; 2019 Aug 06; 20(15):. PubMed ID: 31390782
    [Abstract] [Full Text] [Related]

  • 18. Chronic spinal cord injury functionally repaired by direct implantation of encapsulated hair-follicle-associated pluripotent (HAP) stem cells in a mouse model: Potential for clinical regenerative medicine.
    Obara K, Shirai K, Hamada Y, Arakawa N, Yamane M, Takaoka N, Aki R, Hoffman RM, Amoh Y.
    PLoS One; 2022 Aug 06; 17(1):e0262755. PubMed ID: 35085322
    [Abstract] [Full Text] [Related]

  • 19. PSA-NCAM positive neural progenitors stably expressing BDNF promote functional recovery in a mouse model of spinal cord injury.
    Butenschön J, Zimmermann T, Schmarowski N, Nitsch R, Fackelmeier B, Friedemann K, Radyushkin K, Baumgart J, Lutz B, Leschik J.
    Stem Cell Res Ther; 2016 Jan 13; 7():11. PubMed ID: 26762640
    [Abstract] [Full Text] [Related]

  • 20. Progress in the Use of Induced Pluripotent Stem Cell-Derived Neural Cells for Traumatic Spinal Cord Injuries in Animal Populations: Meta-Analysis and Review.
    Ramotowski C, Qu X, Villa-Diaz LG.
    Stem Cells Transl Med; 2019 Jul 13; 8(7):681-693. PubMed ID: 30903654
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 27.