These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
215 related items for PubMed ID: 26110389
1. Molecular Mechanisms Underlying Hull-Caryopsis Adhesion/Separation Revealed by Comparative Transcriptomic Analysis of Covered/Naked Barley (Hordeum vulgare L.). Duan R, Xiong H, Wang A, Chen G. Int J Mol Sci; 2015 Jun 23; 16(6):14181-93. PubMed ID: 26110389 [Abstract] [Full Text] [Related]
2. The quality of barley husk-caryopsis adhesion is not correlated with caryopsis cuticle permeability. Brennan M, Paterson L, Baharudin AAA, Stanisz-Migal M, Hoebe PN. J Plant Physiol; 2019 Dec 23; 243():153054. PubMed ID: 31648109 [Abstract] [Full Text] [Related]
3. Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Taketa S, Amano S, Tsujino Y, Sato T, Saisho D, Kakeda K, Nomura M, Suzuki T, Matsumoto T, Sato K, Kanamori H, Kawasaki S, Takeda K. Proc Natl Acad Sci U S A; 2008 Mar 11; 105(10):4062-7. PubMed ID: 18316719 [Abstract] [Full Text] [Related]
4. Conversion of hulled into naked barley by Cas endonuclease-mediated knockout of the NUD gene. Gerasimova SV, Hertig C, Korotkova AM, Kolosovskaya EV, Otto I, Hiekel S, Kochetov AV, Khlestkina EK, Kumlehn J. BMC Plant Biol; 2020 Oct 14; 20(Suppl 1):255. PubMed ID: 33050877 [Abstract] [Full Text] [Related]
5. A tiered approach to genome-wide association analysis for the adherence of hulls to the caryopsis of barley seeds reveals footprints of selection. Wabila C, Neumann K, Kilian B, Radchuk V, Graner A. BMC Plant Biol; 2019 Mar 06; 19(1):95. PubMed ID: 30841851 [Abstract] [Full Text] [Related]
6. Validation of the β-amy1 transcription profiling assay and selection of reference genes suited for a RT-qPCR assay in developing barley caryopsis. Ovesná J, Kučera L, Vaculová K, Štrymplová K, Svobodová I, Milella L. PLoS One; 2012 Mar 06; 7(7):e41886. PubMed ID: 22860024 [Abstract] [Full Text] [Related]
7. Transcriptome assembly and analysis of Tibetan Hulless Barley (Hordeum vulgare L. var. nudum) developing grains, with emphasis on quality properties. Chen X, Long H, Gao P, Deng G, Pan Z, Liang J, Tang Y, Tashi N, Yu M. PLoS One; 2014 Mar 06; 9(5):e98144. PubMed ID: 24871534 [Abstract] [Full Text] [Related]
8. A GDSL-motif Esterase/Lipase Affects Wax and Cutin Deposition and Controls Hull-Caryopsis Attachment in Barley. Campoli C, Eskan M, McAllister T, Liu L, Shoesmith J, Prescott A, Ramsay L, Waugh R, McKim SM. Plant Cell Physiol; 2024 Jun 27; 65(6):999-1013. PubMed ID: 38668634 [Abstract] [Full Text] [Related]
9. Dehydration induced transcriptomic responses in two Tibetan hulless barley (Hordeum vulgare var. nudum) accessions distinguished by drought tolerance. Liang J, Chen X, Deng G, Pan Z, Zhang H, Li Q, Yang K, Long H, Yu M. BMC Genomics; 2017 Oct 11; 18(1):775. PubMed ID: 29020945 [Abstract] [Full Text] [Related]
10. Efficient fine mapping of the naked caryopsis gene ( nud) by HEGS (High Efficiency Genome Scanning)/AFLP in barley. Kikuchi S, Taketa S, Ichii M, Kawasaki S. Theor Appl Genet; 2003 Dec 11; 108(1):73-8. PubMed ID: 12942174 [Abstract] [Full Text] [Related]
11. Transcriptome analysis revealed the drought-responsive genes in Tibetan hulless barley. Zeng X, Bai L, Wei Z, Yuan H, Wang Y, Xu Q, Tang Y, Nyima T. BMC Genomics; 2016 May 20; 17():386. PubMed ID: 27207260 [Abstract] [Full Text] [Related]
12. Transcriptome analysis of high-temperature stress in developing barley caryopses: early stress responses and effects on storage compound biosynthesis. Mangelsen E, Kilian J, Harter K, Jansson C, Wanke D, Sundberg E. Mol Plant; 2011 Jan 20; 4(1):97-115. PubMed ID: 20924027 [Abstract] [Full Text] [Related]
13. Analysis of barley (Hordeum vulgare) grain development using three-dimensional digital models. Gubatz S, Dercksen VJ, Brüss C, Weschke W, Wobus U. Plant J; 2007 Nov 20; 52(4):779-90. PubMed ID: 17825055 [Abstract] [Full Text] [Related]
14. Husk to caryopsis adhesion in barley is influenced by pre- and post-anthesis temperatures through changes in a cuticular cementing layer on the caryopsis. Brennan M, Shepherd T, Mitchell S, Topp CFE, Hoad SP. BMC Plant Biol; 2017 Oct 23; 17(1):169. PubMed ID: 29058624 [Abstract] [Full Text] [Related]
15. Developmental regulation of a VEIDase caspase-like proteolytic activity in barley caryopsis. Borén M, Höglund AS, Bozhkov P, Jansson C. J Exp Bot; 2006 Oct 23; 57(14):3747-53. PubMed ID: 17030539 [Abstract] [Full Text] [Related]
16. Differential gene expression for suicide-substrate serine proteinase inhibitors (serpins) in vegetative and grain tissues of barley. Roberts TH, Marttila S, Rasmussen SK, Hejgaard J. J Exp Bot; 2003 Oct 23; 54(391):2251-63. PubMed ID: 14504298 [Abstract] [Full Text] [Related]
17. The transcriptome landscape of developing barley seeds. Kovacik M, Nowicka A, Zwyrtková J, Strejčková B, Vardanega I, Esteban E, Pasha A, Kaduchová K, Krautsova M, Červenková M, Šafář J, Provart NJ, Simon R, Pecinka A. Plant Cell; 2024 Jul 02; 36(7):2512-2530. PubMed ID: 38635902 [Abstract] [Full Text] [Related]
18. Proteome analysis of Fusarium head blight in grains of naked barley (Hordeum vulgare subsp. nudum). Eggert K, Pawelzik E. Proteomics; 2011 Mar 02; 11(5):972-85. PubMed ID: 21271677 [Abstract] [Full Text] [Related]
19. High-throughput transcriptome analysis of barley (Hordeum vulgare) exposed to excessive boron. Tombuloglu G, Tombuloglu H, Sakcali MS, Unver T. Gene; 2015 Feb 15; 557(1):71-81. PubMed ID: 25498907 [Abstract] [Full Text] [Related]
20. Identification of genes specifically expressed in maternal and filial tissues of barley caryopses: a cDNA array analysis. Sreenivasulu N, Altschmied L, Panitz R, Hähnel U, Michalek W, Weschke W, Wobus U. Mol Genet Genomics; 2002 Jan 15; 266(5):758-67. PubMed ID: 11810249 [Abstract] [Full Text] [Related] Page: [Next] [New Search]