These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
392 related items for PubMed ID: 26112100
1. Intracellular synthesis of glutamic acid in Bacillus methylotrophicus SK19.001, a glutamate-independent poly(γ-glutamic acid)-producing strain. Peng Y, Zhang T, Mu W, Miao M, Jiang B. J Sci Food Agric; 2016 Jan 15; 96(1):66-72. PubMed ID: 26112100 [Abstract] [Full Text] [Related]
2. Expression of glr gene encoding glutamate racemase in Bacillus licheniformis WX-02 and its regulatory effects on synthesis of poly-γ-glutamic acid. Jiang F, Qi G, Ji Z, Zhang S, Liu J, Ma X, Chen S. Biotechnol Lett; 2011 Sep 15; 33(9):1837-40. PubMed ID: 21544614 [Abstract] [Full Text] [Related]
3. Glutamate dehydrogenase (RocG) in Bacillus licheniformis WX-02: Enzymatic properties and specific functions in glutamic acid synthesis for poly-γ-glutamic acid production. Tian G, Wang Q, Wei X, Ma X, Chen S. Enzyme Microb Technol; 2017 Apr 15; 99():9-15. PubMed ID: 28193334 [Abstract] [Full Text] [Related]
4. Enhancing poly-γ-glutamic acid production in Bacillus amyloliquefaciens by introducing the glutamate synthesis features from Corynebacterium glutamicum. Feng J, Quan Y, Gu Y, Liu F, Huang X, Shen H, Dang Y, Cao M, Gao W, Lu X, Wang Y, Song C, Wang S. Microb Cell Fact; 2017 May 22; 16(1):88. PubMed ID: 28532451 [Abstract] [Full Text] [Related]
5. Improved poly-γ-glutamic acid production in Bacillus amyloliquefaciens by modular pathway engineering. Feng J, Gu Y, Quan Y, Cao M, Gao W, Zhang W, Wang S, Yang C, Song C. Metab Eng; 2015 Nov 22; 32():106-115. PubMed ID: 26410449 [Abstract] [Full Text] [Related]
6. Glr, a glutamate racemase, supplies D-glutamate to both peptidoglycan synthesis and poly-gamma-glutamate production in gamma-PGA-producing Bacillus subtilis. Kada S, Nanamiya H, Kawamura F, Horinouchi S. FEMS Microbiol Lett; 2004 Jul 01; 236(1):13-20. PubMed ID: 15212785 [Abstract] [Full Text] [Related]
7. Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of pgsBCA genes. Cao M, Geng W, Liu L, Song C, Xie H, Guo W, Jin Y, Wang S. Bioresour Technol; 2011 Mar 01; 102(5):4251-7. PubMed ID: 21232939 [Abstract] [Full Text] [Related]
8. Metabolome analysis reveals the effect of carbon catabolite control on the poly(γ-glutamic acid) biosynthesis of Bacillus licheniformis ATCC 9945. Mitsunaga H, Meissner L, Palmen T, Bamba T, Büchs J, Fukusaki E. J Biosci Bioeng; 2016 Apr 01; 121(4):413-9. PubMed ID: 26419706 [Abstract] [Full Text] [Related]
9. Engineering of recombinant Escherichia coli cells co-expressing poly-γ-glutamic acid (γ-PGA) synthetase and glutamate racemase for differential yielding of γ-PGA. Cao M, Geng W, Zhang W, Sun J, Wang S, Feng J, Zheng P, Jiang A, Song C. Microb Biotechnol; 2013 Nov 01; 6(6):675-84. PubMed ID: 23919316 [Abstract] [Full Text] [Related]
10. Biochemistry and molecular genetics of poly-gamma-glutamate synthesis. Ashiuchi M, Misono H. Appl Microbiol Biotechnol; 2002 Jun 01; 59(1):9-14. PubMed ID: 12073126 [Abstract] [Full Text] [Related]
11. High-level exogenous glutamic acid-independent production of poly-(γ-glutamic acid) with organic acid addition in a new isolated Bacillus subtilis C10. Zhang H, Zhu J, Zhu X, Cai J, Zhang A, Hong Y, Huang J, Huang L, Xu Z. Bioresour Technol; 2012 Jul 01; 116():241-6. PubMed ID: 22522018 [Abstract] [Full Text] [Related]
12. Calcium regulates glutamate dehydrogenase and poly-γ-glutamic acid synthesis in Bacillus natto. Meng Y, Dong G, Zhang C, Ren Y, Qu Y, Chen W. Biotechnol Lett; 2016 Apr 01; 38(4):673-9. PubMed ID: 26712367 [Abstract] [Full Text] [Related]
13. Deletion of genes involved in glutamate metabolism to improve poly-gamma-glutamic acid production in B. amyloliquefaciens LL3. Zhang W, He Y, Gao W, Feng J, Cao M, Yang C, Song C, Wang S. J Ind Microbiol Biotechnol; 2015 Feb 01; 42(2):297-305. PubMed ID: 25540046 [Abstract] [Full Text] [Related]
14. Investigation of Glutamate Dependence Mechanism for Poly-γ-glutamic Acid Production in Bacillus subtilis on the Basis of Transcriptome Analysis. Sha Y, Sun T, Qiu Y, Zhu Y, Zhan Y, Zhang Y, Xu Z, Li S, Feng X, Xu H. J Agric Food Chem; 2019 Jun 05; 67(22):6263-6274. PubMed ID: 31088055 [Abstract] [Full Text] [Related]
15. Metabolic studies of temperature control strategy on poly(γ-glutamic acid) production in a thermophilic strain Bacillus subtilis GXA-28. Zeng W, Chen G, Wang Q, Zheng S, Shu L, Liang Z. Bioresour Technol; 2014 Mar 05; 155():104-10. PubMed ID: 24434700 [Abstract] [Full Text] [Related]
16. Enhancing Poly-γ-glutamic Acid Production in Bacillus tequilensis BL01 through a Multienzyme Assembly Strategy and Expression Features of Glutamate Synthesis from Corynebacterium glutamicum. Wang D, Fu X, Gao J, Zhao X, Bai W. J Agric Food Chem; 2024 Apr 17; 72(15):8674-8683. PubMed ID: 38569079 [Abstract] [Full Text] [Related]
17. Enhanced production of poly (gamma-glutamic acid) from Bacillus licheniformis NCIM 2324 by using metabolic precursors. Bajaj IB, Singhal RS. Appl Biochem Biotechnol; 2009 Oct 17; 159(1):133-41. PubMed ID: 19005621 [Abstract] [Full Text] [Related]
18. Enhanced Poly-γ-Glutamic Acid Production by a Newly Isolated Bacillus halotolerans F29. Sun X, Cai Y, Wang D. J Microbiol; 2024 Aug 17; 62(8):695-707. PubMed ID: 39164498 [Abstract] [Full Text] [Related]
19. Microbial production of poly-γ-glutamic acid. Sirisansaneeyakul S, Cao M, Kongklom N, Chuensangjun C, Shi Z, Chisti Y. World J Microbiol Biotechnol; 2017 Sep 05; 33(9):173. PubMed ID: 28875418 [Abstract] [Full Text] [Related]
20. Chromosomal integration of a synthetic expression control sequence achieves poly-gamma-glutamate production in a Bacillus subtilis strain. Yeh CM, Wang JP, Lo SC, Chan WC, Lin MY. Biotechnol Prog; 2010 Sep 05; 26(4):1001-7. PubMed ID: 20564357 [Abstract] [Full Text] [Related] Page: [Next] [New Search]