These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


444 related items for PubMed ID: 26119589

  • 1. Biomechanical and biophysical environment of bone from the macroscopic to the pericellular and molecular level.
    Ren L, Yang P, Wang Z, Zhang J, Ding C, Shang P.
    J Mech Behav Biomed Mater; 2015 Oct; 50():104-22. PubMed ID: 26119589
    [Abstract] [Full Text] [Related]

  • 2. Effects of loading frequency on the functional adaptation of trabeculae predicted by bone remodeling simulation.
    Kameo Y, Adachi T, Hojo M.
    J Mech Behav Biomed Mater; 2011 Aug; 4(6):900-8. PubMed ID: 21616471
    [Abstract] [Full Text] [Related]

  • 3. Mathematically modeling fluid flow and fluid shear stress in the canaliculi of a loaded osteon.
    Wu X, Wang N, Wang Z, Yu W, Wang Y, Guo Y, Chen W.
    Biomed Eng Online; 2016 Dec 28; 15(Suppl 2):149. PubMed ID: 28155688
    [Abstract] [Full Text] [Related]

  • 4. Would increased interstitial fluid flow through in situ mechanical stimulation enhance bone remodeling?
    Letechipia JE, Alessi A, Rodriguez G, Asbun J.
    Med Hypotheses; 2010 Aug 28; 75(2):196-8. PubMed ID: 20227836
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Mechanobiology of bone tissue.
    Klein-Nulend J, Bacabac RG, Mullender MG.
    Pathol Biol (Paris); 2005 Dec 28; 53(10):576-80. PubMed ID: 16364809
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Skeletal adaptation to intramedullary pressure-induced interstitial fluid flow is enhanced in mice subjected to targeted osteocyte ablation.
    Kwon RY, Meays DR, Meilan AS, Jones J, Miramontes R, Kardos N, Yeh JC, Frangos JA.
    PLoS One; 2012 Dec 28; 7(3):e33336. PubMed ID: 22413015
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Osteocyte lacunae tissue strain in cortical bone.
    Nicolella DP, Moravits DE, Gale AM, Bonewald LF, Lankford J.
    J Biomech; 2006 Dec 28; 39(9):1735-43. PubMed ID: 15993413
    [Abstract] [Full Text] [Related]

  • 12. Mechanotransduction in cortical bone and the role of piezoelectricity: a numerical approach.
    Stroe MC, Crolet JM, Racila M.
    Comput Methods Biomech Biomed Engin; 2013 Dec 28; 16(2):119-29. PubMed ID: 21916677
    [Abstract] [Full Text] [Related]

  • 13. Numerical simulation of streaming potentials due to deformation-induced hierarchical flows in cortical bone.
    Mak AF, Zhang JD.
    J Biomech Eng; 2001 Feb 28; 123(1):66-70. PubMed ID: 11277304
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Bone tissue engineering: the role of interstitial fluid flow.
    Hillsley MV, Frangos JA.
    Biotechnol Bioeng; 1994 Mar 25; 43(7):573-81. PubMed ID: 11540959
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Microgravity and bone cell mechanosensitivity.
    Klein-Nulend J, Bacabac RG, Veldhuijzen JP, Van Loon JJ.
    Adv Space Res; 2003 Mar 25; 32(8):1551-9. PubMed ID: 15000126
    [Abstract] [Full Text] [Related]

  • 19. Mechanotransduction and the functional response of bone to mechanical strain.
    Duncan RL, Turner CH.
    Calcif Tissue Int; 1995 Nov 25; 57(5):344-58. PubMed ID: 8564797
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.