These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


210 related items for PubMed ID: 26120604

  • 1. Detecting miRNA by producing RNA: a sensitive assay that combines rolling-circle DNA polymerization and rolling circle transcription.
    Li X, Zheng F, Ren R.
    Chem Commun (Camb); 2015 Aug 04; 51(60):11976-9. PubMed ID: 26120604
    [Abstract] [Full Text] [Related]

  • 2. Lighting-up RNA aptamer transcription synchronization amplification for ultrasensitive and label-free imaging of microRNA in single cells.
    Li D, Yang F, Yuan R, Xiang Y.
    Anal Chim Acta; 2020 Mar 15; 1102():84-90. PubMed ID: 32043999
    [Abstract] [Full Text] [Related]

  • 3. Fluorescence generation from tandem repeats of a malachite green RNA aptamer using rolling circle transcription.
    Furukawa K, Abe H, Abe N, Harada M, Tsuneda S, Ito Y.
    Bioorg Med Chem Lett; 2008 Aug 15; 18(16):4562-5. PubMed ID: 18667307
    [Abstract] [Full Text] [Related]

  • 4. The Discovery of Rolling Circle Amplification and Rolling Circle Transcription.
    Mohsen MG, Kool ET.
    Acc Chem Res; 2016 Nov 15; 49(11):2540-2550. PubMed ID: 27797171
    [Abstract] [Full Text] [Related]

  • 5. Optimal DNA templates for rolling circle amplification revealed by in vitro selection.
    Mao Y, Liu M, Tram K, Gu J, Salena BJ, Jiang Y, Li Y.
    Chemistry; 2015 May 26; 21(22):8069-74. PubMed ID: 25877998
    [Abstract] [Full Text] [Related]

  • 6. Ultrasensitive and selective detection of nicotinamide adenine dinucleotide by target-triggered ligation-rolling circle amplification.
    Zhao Y, Qi L, Chen F, Dong Y, Kong Y, Wu Y, Fan C.
    Chem Commun (Camb); 2012 Apr 04; 48(27):3354-6. PubMed ID: 22361740
    [Abstract] [Full Text] [Related]

  • 7. Increasing the complexity of periodic protein nanostructures by the rolling-circle-amplified synthesis of aptamers.
    Cheglakov Z, Weizmann Y, Braunschweig AB, Wilner OI, Willner I.
    Angew Chem Int Ed Engl; 2008 Apr 04; 47(1):126-30. PubMed ID: 18038440
    [No Abstract] [Full Text] [Related]

  • 8. Biosensing by Tandem Reactions of Structure Switching, Nucleolytic Digestion, and DNA Amplification of a DNA Assembly.
    Liu M, Zhang W, Zhang Q, Brennan JD, Li Y.
    Angew Chem Int Ed Engl; 2015 Aug 10; 54(33):9637-41. PubMed ID: 26119600
    [Abstract] [Full Text] [Related]

  • 9. Strategies for highly sensitive biomarker detection by Rolling Circle Amplification of signals from nucleic acid composed sensors.
    Stougaard M, Juul S, Andersen FF, Knudsen BR.
    Integr Biol (Camb); 2011 Oct 10; 3(10):982-92. PubMed ID: 21927767
    [Abstract] [Full Text] [Related]

  • 10. Direct incorporation and extension of a fluorescent nucleotide through rolling circle DNA amplification for the detection of microRNA 24-3P.
    Le BH, Seo YJ.
    Bioorg Med Chem Lett; 2018 Jun 15; 28(11):2035-2038. PubMed ID: 29709251
    [Abstract] [Full Text] [Related]

  • 11. Sensitive detection of nucleic acids with rolling circle amplification and surface-enhanced Raman scattering spectroscopy.
    Hu J, Zhang CY.
    Anal Chem; 2010 Nov 01; 82(21):8991-7. PubMed ID: 20919697
    [Abstract] [Full Text] [Related]

  • 12. Label-free and highly sensitive detection of microRNA from cancer cells via target-induced cascade amplification generation of lighting-up RNA aptamers.
    Chen T, Yang J, Tang Y, Fan X, Zhou W, Jiang B, Wang D.
    Anal Chim Acta; 2024 Feb 08; 1289():342187. PubMed ID: 38245202
    [Abstract] [Full Text] [Related]

  • 13. Real-time monitoring of rolling-circle amplification using a modified molecular beacon design.
    Nilsson M, Gullberg M, Dahl F, Szuhai K, Raap AK.
    Nucleic Acids Res; 2002 Jul 15; 30(14):e66. PubMed ID: 12136114
    [Abstract] [Full Text] [Related]

  • 14. Highly sensitive determination of microRNA using target-primed and branched rolling-circle amplification.
    Cheng Y, Zhang X, Li Z, Jiao X, Wang Y, Zhang Y.
    Angew Chem Int Ed Engl; 2009 Jul 15; 48(18):3268-72. PubMed ID: 19219883
    [Abstract] [Full Text] [Related]

  • 15. Rolling-circle amplification: unshared advantages in miRNA detection.
    Neubacher S, Arenz C.
    Chembiochem; 2009 May 25; 10(8):1289-91. PubMed ID: 19373796
    [Abstract] [Full Text] [Related]

  • 16. Amplified Tandem Spinach-Based Aptamer Transcription Enables Low Background miRNA Detection.
    Tang X, Deng R, Sun Y, Ren X, Zhou M, Li J.
    Anal Chem; 2018 Aug 21; 90(16):10001-10008. PubMed ID: 30016869
    [Abstract] [Full Text] [Related]

  • 17. Sensitive detection of microRNA in complex biological samples by using two stages DSN-assisted target recycling signal amplification method.
    Zhang K, Wang K, Zhu X, Xu F, Xie M.
    Biosens Bioelectron; 2017 Jan 15; 87():358-364. PubMed ID: 27589398
    [Abstract] [Full Text] [Related]

  • 18. Tagging the rolling circle products with nanocrystal clusters for cascade signal increase in the detection of miRNA.
    Yao J, Flack K, Ding L, Zhong W.
    Analyst; 2013 Jun 07; 138(11):3121-5. PubMed ID: 23591274
    [Abstract] [Full Text] [Related]

  • 19. Toehold-initiated rolling circle amplification for visualizing individual microRNAs in situ in single cells.
    Deng R, Tang L, Tian Q, Wang Y, Lin L, Li J.
    Angew Chem Int Ed Engl; 2014 Feb 24; 53(9):2389-93. PubMed ID: 24469913
    [Abstract] [Full Text] [Related]

  • 20. Rolling-circle amplification detection of thrombin using surface-enhanced Raman spectroscopy with core-shell nanoparticle probe.
    Li X, Wang L, Li C.
    Chemistry; 2015 Apr 27; 21(18):6817-22. PubMed ID: 25766032
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.