These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
481 related items for PubMed ID: 26120816
61. Label-free and amplified electrochemical detection of cytokine based on hairpin aptamer and catalytic DNAzyme. Zhang H, Jiang B, Xiang Y, Chai Y, Yuan R. Analyst; 2012 Feb 21; 137(4):1020-3. PubMed ID: 22193340 [Abstract] [Full Text] [Related]
62. A versatile and highly sensitive homogeneous electrochemical strategy based on the split aptamer binding-induced DNA three-way junction and exonuclease III-assisted target recycling. Hou T, Li W, Zhang L, Li F. Analyst; 2015 Aug 21; 140(16):5748-53. PubMed ID: 26165638 [Abstract] [Full Text] [Related]
63. An ultrasensitive and universal photoelectrochemical immunoassay based on enzyme mimetics enhanced signal amplification. Wang GL, Shu JX, Dong YM, Wu XM, Li ZJ. Biosens Bioelectron; 2015 Apr 15; 66():283-9. PubMed ID: 25437365 [Abstract] [Full Text] [Related]
64. Optical aptasensors for the analysis of the vascular endothelial growth factor (VEGF). Freeman R, Girsh J, Jou AF, Ho JA, Hug T, Dernedde J, Willner I. Anal Chem; 2012 Jul 17; 84(14):6192-8. PubMed ID: 22746189 [Abstract] [Full Text] [Related]
65. A novel label-free electrochemical impedance aptasensor for highly sensitive detection of human interferon-gamma based on target-induced exonuclease inhibition. Li H, Song S, Wen M, Bao T, Wu Z, Xiong H, Zhang X, Wen W, Wang S. Biosens Bioelectron; 2019 Oct 01; 142():111532. PubMed ID: 31377576 [Abstract] [Full Text] [Related]
66. Electrochemiluminescence ratiometry: a new approach to DNA biosensing. Zhang HR, Xu JJ, Chen HY. Anal Chem; 2013 Jun 04; 85(11):5321-5. PubMed ID: 23692466 [Abstract] [Full Text] [Related]
67. An electrochemical aptasensor for detection of IFN-γ using graphene and a dual signal amplification strategy based on the exonuclease-mediated surface-initiated enzymatic polymerization. Liu C, Xiang G, Jiang D, Liu L, Liu F, Luo F, Pu X. Analyst; 2015 Nov 21; 140(22):7784-91. PubMed ID: 26460269 [Abstract] [Full Text] [Related]
68. A signal-on nanobiosensor for VEGF165 detection based on supraparticle copper nanoclusters formed on bivalent aptamer. Moghadam FM, Rahaie M. Biosens Bioelectron; 2019 May 01; 132():186-195. PubMed ID: 30875630 [Abstract] [Full Text] [Related]
69. Facile combination of beta-cyclodextrin host-guest recognition with exonuclease-assistant signal amplification for sensitive electrochemical assay of ochratoxin A. Wang Y, Ning G, Wu Y, Wu S, Zeng B, Liu G, He X, Wang K. Biosens Bioelectron; 2019 Jan 15; 124-125():82-88. PubMed ID: 30343160 [Abstract] [Full Text] [Related]
70. TiO2 nanotubes loaded with CdS nanocrystals as enhanced emitters of electrochemiluminescence: application to an assay for prostate-specific antigen. Dai P, Liu C, Xie C, Ke J, He Y, Wei L, Chen L, Jin J. Anal Bioanal Chem; 2020 Feb 15; 412(6):1375-1384. PubMed ID: 31919610 [Abstract] [Full Text] [Related]
71. Amplified electrochemiluminescent aptasensor using mimicking bi-enzyme nanocomplexes as signal enhancement. Zhuo Y, Ma MN, Chai YQ, Zhao M, Yuan R. Anal Chim Acta; 2014 Jan 27; 809():47-53. PubMed ID: 24418132 [Abstract] [Full Text] [Related]
72. A highly sensitive electrochemical aptasensor for thrombin detection using functionalized mesoporous silica@multiwalled carbon nanotubes as signal tags and DNAzyme signal amplification. Zhang J, Chai Y, Yuan R, Yuan Y, Bai L, Xie S. Analyst; 2013 Nov 21; 138(22):6938-45. PubMed ID: 24081001 [Abstract] [Full Text] [Related]
73. G-quadruplex DNAzyme-based chemiluminescence biosensing platform based on dual signal amplification for label-free and sensitive detection of protein. Zou P, Liu Y, Wang H, Wu J, Zhu F, Wu H. Biosens Bioelectron; 2016 May 15; 79():29-33. PubMed ID: 26686920 [Abstract] [Full Text] [Related]
74. Opto-magnetic interaction between electrochemiluminescent CdS : Mn film and Fe3O4 nanoparticles and its application to immunosensing. Shan Y, Xu JJ, Chen HY. Chem Commun (Camb); 2010 Jun 21; 46(23):4187-9. PubMed ID: 20458411 [Abstract] [Full Text] [Related]
75. Sensitive and label-free chemiluminescence detection of malathion using exonuclease-assisted dual signal amplification and G-quadruplex/hemin DNAzyme. Wu H, Wu J, Wang H, Liu Y, Han G, Zou P. J Hazard Mater; 2021 Jun 05; 411():124784. PubMed ID: 33450635 [Abstract] [Full Text] [Related]
77. A signal-on electrochemiluminescence aptamer biosensor for the detection of ultratrace thrombin based on junction-probe. Zhang J, Chen P, Wu X, Chen J, Xu L, Chen G, Fu F. Biosens Bioelectron; 2011 Jan 15; 26(5):2645-50. PubMed ID: 21146976 [Abstract] [Full Text] [Related]
78. Cleavage-based hybridization chain reaction for electrochemical detection of thrombin. Chang Y, Chai Y, Xie S, Yuan Y, Zhang J, Yuan R. Analyst; 2014 Sep 07; 139(17):4264-9. PubMed ID: 24971937 [Abstract] [Full Text] [Related]
79. A novel electrochemical aptasensor for thrombin detection based on the hybridization chain reaction with hemin/G-quadruplex DNAzyme-signal amplification. Zhang J, Chai Y, Yuan R, Yuan Y, Bai L, Xie S, Jiang L. Analyst; 2013 Aug 21; 138(16):4558-64. PubMed ID: 23741737 [Abstract] [Full Text] [Related]
80. A portable microchip for ultrasensitive and high-throughput assay of thrombin by rolling circle amplification and hemin/G-quadruplex system. Lin X, Chen Q, Liu W, Li H, Lin JM. Biosens Bioelectron; 2014 Jun 15; 56():71-6. PubMed ID: 24469539 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]