These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
134 related items for PubMed ID: 2612377
1. The development of the Xenopus retinofugal pathway: optic fibers join a pre-existing tract. Easter SS, Taylor JS. Development; 1989 Nov; 107(3):553-73. PubMed ID: 2612377 [Abstract] [Full Text] [Related]
2. The development of a simple scaffold of axon tracts in the brain of the embryonic zebrafish, Brachydanio rerio. Wilson SW, Ross LS, Parrett T, Easter SS. Development; 1990 Jan; 108(1):121-45. PubMed ID: 2351059 [Abstract] [Full Text] [Related]
3. Stereotyped pathway selection by growth cones of early epiphysial neurons in the embryonic zebrafish. Wilson SW, Easter SS. Development; 1991 Jul; 112(3):723-46. PubMed ID: 1935687 [Abstract] [Full Text] [Related]
4. Changes in fiber order in the optic nerve and tract of rat embryos. Chan SO, Guillery RW. J Comp Neurol; 1994 Jun 01; 344(1):20-32. PubMed ID: 8063954 [Abstract] [Full Text] [Related]
5. Precocious pathfinding: retinal axons can navigate in an axonless brain. Cornel E, Holt C. Neuron; 1992 Dec 01; 9(6):1001-11. PubMed ID: 1281416 [Abstract] [Full Text] [Related]
6. Retinal projections in the freshwater butterfly fish, Pantodon buchholzi (Osteoglossoidei). I. Cytoarchitectonic analysis and primary visual pathways. Butler AB, Saidel WM. Brain Behav Evol; 1991 Dec 01; 38(2-3):127-53. PubMed ID: 1742599 [Abstract] [Full Text] [Related]
7. Initial tract formation in the mouse brain. Easter SS, Ross LS, Frankfurter A. J Neurosci; 1993 Jan 01; 13(1):285-99. PubMed ID: 8423474 [Abstract] [Full Text] [Related]
8. Stages of growth of hamster retinofugal axons: implications for developing axonal pathways with multiple targets. Bhide PG, Frost DO. J Neurosci; 1991 Feb 01; 11(2):485-504. PubMed ID: 1992013 [Abstract] [Full Text] [Related]
9. Substrate pathways which guide growing axons in Xenopus embryos. Katz MJ, Lasek RJ. J Comp Neurol; 1979 Feb 15; 183(4):817-31. PubMed ID: 762274 [Abstract] [Full Text] [Related]
10. Does timing of axon outgrowth influence initial retinotectal topography in Xenopus? Holt CE. J Neurosci; 1984 Apr 15; 4(4):1130-52. PubMed ID: 6325604 [Abstract] [Full Text] [Related]
11. The organization of the fibers in the optic nerve of normal and tectum-less Rana pipiens. Reh TA, Pitts E, Constantine-Paton M. J Comp Neurol; 1983 Aug 10; 218(3):282-96. PubMed ID: 6604077 [Abstract] [Full Text] [Related]
12. Organization of ascending projections from the optic tectum and mesencephalic pretectal gray in Rana pipiens. Montgomery NM, Fite KV. Vis Neurosci; 1991 Nov 10; 7(5):459-78. PubMed ID: 1764416 [Abstract] [Full Text] [Related]
16. Segregation of optic axons based on central target: the medial optic tract in Rana pipiens. Montgomery NM, Fite KV, Li Z. Neurosci Lett; 1995 Aug 11; 195(3):199-202. PubMed ID: 8584209 [Abstract] [Full Text] [Related]
17. Neuronal pathfinding during development of the rostral brain in Xenopus. Key B, Anderson RB. Clin Exp Pharmacol Physiol; 1999 Sep 11; 26(9):752-4. PubMed ID: 10499168 [Abstract] [Full Text] [Related]
18. Regionally specific expression of L1 and sialylated NCAM in the retinofugal pathway of mouse embryos. Chung KY, Leung KM, Lin CC, Tam KC, Hao YL, Taylor JS, Chan SO. J Comp Neurol; 2004 Apr 12; 471(4):482-98. PubMed ID: 15022265 [Abstract] [Full Text] [Related]
19. Tenascin in the developing chick visual system: distribution and potential role as a modulator of retinal axon growth. Perez RG, Halfter W. Dev Biol; 1993 Mar 12; 156(1):278-92. PubMed ID: 7680630 [Abstract] [Full Text] [Related]
20. The development and restriction of the ipsilateral retinofugal projection in the chick. O'Leary DM, Gerfen CR, Cowan WM. Brain Res; 1983 Oct 12; 312(1):93-109. PubMed ID: 6652510 [Abstract] [Full Text] [Related] Page: [Next] [New Search]