These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


433 related items for PubMed ID: 26125187

  • 21. Prediction of essential proteins based on subcellular localization and gene expression correlation.
    Fan Y, Tang X, Hu X, Wu W, Ping Q.
    BMC Bioinformatics; 2017 Dec 01; 18(Suppl 13):470. PubMed ID: 29219067
    [Abstract] [Full Text] [Related]

  • 22. Essential Protein Detection by Random Walk on Weighted Protein-Protein Interaction Networks.
    Xu B, Guan J, Wang Y, Wang Z.
    IEEE/ACM Trans Comput Biol Bioinform; 2019 Dec 01; 16(2):377-387. PubMed ID: 28504946
    [Abstract] [Full Text] [Related]

  • 23. Construction of dynamic probabilistic protein interaction networks for protein complex identification.
    Zhang Y, Lin H, Yang Z, Wang J.
    BMC Bioinformatics; 2016 Apr 27; 17(1):186. PubMed ID: 27117946
    [Abstract] [Full Text] [Related]

  • 24. A new method for predicting essential proteins based on dynamic network topology and complex information.
    Luo J, Kuang L.
    Comput Biol Chem; 2014 Oct 27; 52():34-42. PubMed ID: 25179858
    [Abstract] [Full Text] [Related]

  • 25. Iteration method for predicting essential proteins based on orthology and protein-protein interaction networks.
    Peng W, Wang J, Wang W, Liu Q, Wu FX, Pan Y.
    BMC Syst Biol; 2012 Jul 18; 6():87. PubMed ID: 22808943
    [Abstract] [Full Text] [Related]

  • 26. Identifying protein complexes based on node embeddings obtained from protein-protein interaction networks.
    Liu X, Yang Z, Sang S, Zhou Z, Wang L, Zhang Y, Lin H, Wang J, Xu B.
    BMC Bioinformatics; 2018 Sep 21; 19(1):332. PubMed ID: 30241459
    [Abstract] [Full Text] [Related]

  • 27. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering.
    Theofilatos K, Pavlopoulou N, Papasavvas C, Likothanassis S, Dimitrakopoulos C, Georgopoulos E, Moschopoulos C, Mavroudi S.
    Artif Intell Med; 2015 Mar 21; 63(3):181-9. PubMed ID: 25765008
    [Abstract] [Full Text] [Related]

  • 28. Predicting essential proteins based on subcellular localization, orthology and PPI networks.
    Li G, Li M, Wang J, Wu J, Wu FX, Pan Y.
    BMC Bioinformatics; 2016 Aug 31; 17 Suppl 8(Suppl 8):279. PubMed ID: 27586883
    [Abstract] [Full Text] [Related]

  • 29. Protein complex prediction with RNSC.
    King AD, Pržulj N, Jurisica I.
    Methods Mol Biol; 2012 Aug 31; 804():297-312. PubMed ID: 22144160
    [Abstract] [Full Text] [Related]

  • 30. A novel essential protein identification method based on PPI networks and gene expression data.
    Zhong J, Tang C, Peng W, Xie M, Sun Y, Tang Q, Xiao Q, Yang J.
    BMC Bioinformatics; 2021 May 13; 22(1):248. PubMed ID: 33985429
    [Abstract] [Full Text] [Related]

  • 31. Predicting Essential Proteins by Integrating Network Topology, Subcellular Localization Information, Gene Expression Profile and GO Annotation Data.
    Zhang W, Xu J, Zou X.
    IEEE/ACM Trans Comput Biol Bioinform; 2020 May 13; 17(6):2053-2061. PubMed ID: 31095490
    [Abstract] [Full Text] [Related]

  • 32. A new computational strategy for identifying essential proteins based on network topological properties and biological information.
    Qin C, Sun Y, Dong Y.
    PLoS One; 2017 May 13; 12(7):e0182031. PubMed ID: 28753682
    [Abstract] [Full Text] [Related]

  • 33. Predicting overlapping protein complexes from weighted protein interaction graphs by gradually expanding dense neighborhoods.
    Dimitrakopoulos C, Theofilatos K, Pegkas A, Likothanassis S, Mavroudi S.
    Artif Intell Med; 2016 Jul 13; 71():62-9. PubMed ID: 27506132
    [Abstract] [Full Text] [Related]

  • 34. Construction of Refined Protein Interaction Network for Predicting Essential Proteins.
    Li M, Ni P, Chen X, Wang J, Wu FX, Pan Y.
    IEEE/ACM Trans Comput Biol Bioinform; 2019 Jul 13; 16(4):1386-1397. PubMed ID: 28186903
    [Abstract] [Full Text] [Related]

  • 35. Computational Analysis of the Chaperone Interaction Networks.
    Kumar A, Rizzolo K, Zilles S, Babu M, Houry WA.
    Methods Mol Biol; 2018 Jul 13; 1709():275-291. PubMed ID: 29177666
    [Abstract] [Full Text] [Related]

  • 36. Identification of essential proteins based on edge features and the fusion of multiple-source biological information.
    Liu P, Liu C, Mao Y, Guo J, Liu F, Cai W, Zhao F.
    BMC Bioinformatics; 2023 May 17; 24(1):203. PubMed ID: 37198530
    [Abstract] [Full Text] [Related]

  • 37. A new algorithm for essential proteins identification based on the integration of protein complex co-expression information and edge clustering coefficient.
    Luo J, Wu J.
    Int J Data Min Bioinform; 2015 May 17; 12(3):257-74. PubMed ID: 26510286
    [Abstract] [Full Text] [Related]

  • 38. Identifying protein complexes based on brainstorming strategy.
    Shen X, Zhou J, Yi L, Hu X, He T, Yang J.
    Methods; 2016 Nov 01; 110():44-53. PubMed ID: 27405005
    [Abstract] [Full Text] [Related]

  • 39. Predicting Protein-Protein Interactions via Random Ferns with Evolutionary Matrix Representation.
    Li Y, Wang Z, You ZH, Li LP, Hu X.
    Comput Math Methods Med; 2022 Nov 01; 2022():7191684. PubMed ID: 35242211
    [Abstract] [Full Text] [Related]

  • 40. Functional centrality: detecting lethality of proteins in protein interaction networks.
    Tew KL, Li XL, Tan SH.
    Genome Inform; 2007 Nov 01; 19():166-77. PubMed ID: 18546514
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 22.