These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


154 related items for PubMed ID: 26134596

  • 1. Preclinical Validation of Multilevel Intraparenchymal Stem Cell Therapy in the Porcine Spinal Cord.
    Gutierrez J, Lamanna JJ, Grin N, Hurtig CV, Miller JH, Riley J, Urquia L, Avalos P, Svendsen CN, Federici T, Boulis NM.
    Neurosurgery; 2015 Oct; 77(4):604-12; discussion 612. PubMed ID: 26134596
    [Abstract] [Full Text] [Related]

  • 2. Cervical multilevel intraspinal stem cell therapy: assessment of surgical risks in Gottingen minipigs.
    Raore B, Federici T, Taub J, Wu MC, Riley J, Franz CK, Kliem MA, Snyder B, Feldman EL, Johe K, Boulis NM.
    Spine (Phila Pa 1976); 2011 Feb 01; 36(3):E164-71. PubMed ID: 21099736
    [Abstract] [Full Text] [Related]

  • 3. Analysis of dosing regimen and reproducibility of intraspinal grafting of human spinal stem cells in immunosuppressed minipigs.
    Usvald D, Vodicka P, Hlucilova J, Prochazka R, Motlik J, Kuchorova K, Johe K, Marsala S, Scadeng M, Kakinohana O, Navarro R, Santa M, Hefferan MP, Yaksh TL, Marsala M.
    Cell Transplant; 2010 Feb 01; 19(9):1103-22. PubMed ID: 20412634
    [Abstract] [Full Text] [Related]

  • 4. Magnetic Resonance Imaging-Guided Transplantation of Neural Stem Cells into the Porcine Spinal Cord.
    Lamanna JJ, Urquia LN, Hurtig CV, Gutierrez J, Anderson C, Piferi P, Federici T, Oshinski JN, Boulis NM.
    Stereotact Funct Neurosurg; 2017 Feb 01; 95(1):60-68. PubMed ID: 28132063
    [Abstract] [Full Text] [Related]

  • 5. Method and Apparatus for the Automated Delivery of Continuous Neural Stem Cell Trails Into the Spinal Cord of Small and Large Animals.
    Kutikov AB, Moore SW, Layer RT, Podell PE, Sridhar N, Santamaria AJ, Aimetti AA, Hofstetter CP, Ulich TR, Guest JD.
    Neurosurgery; 2019 Oct 01; 85(4):560-573. PubMed ID: 30169668
    [Abstract] [Full Text] [Related]

  • 6. Cervical spinal cord therapeutics delivery: preclinical safety validation of a stabilized microinjection platform.
    Riley J, Federici T, Park J, Suzuki M, Franz CK, Tork C, McHugh J, Teng Q, Svendsen C, Boulis NM.
    Neurosurgery; 2009 Oct 01; 65(4):754-61; discussion 761-2. PubMed ID: 19834381
    [Abstract] [Full Text] [Related]

  • 7. Targeted Inhibition of Leucine-Rich Repeat and Immunoglobulin Domain-Containing Protein 1 in Transplanted Neural Stem Cells Promotes Neuronal Differentiation and Functional Recovery in Rats Subjected to Spinal Cord Injury.
    Chen N, Cen JS, Wang J, Qin G, Long L, Wang L, Wei F, Xiang Q, Deng DY, Wan Y.
    Crit Care Med; 2016 Mar 01; 44(3):e146-57. PubMed ID: 26491860
    [Abstract] [Full Text] [Related]

  • 8. Diffusion tensor imaging as a biomarker for assessing neuronal stem cell treatments affecting areas distal to the site of spinal cord injury.
    Jirjis MB, Valdez C, Vedantam A, Schmit BD, Kurpad SN.
    J Neurosurg Spine; 2017 Feb 01; 26(2):243-251. PubMed ID: 27689421
    [Abstract] [Full Text] [Related]

  • 9. Commentary: Preclinical Validation of Multilevel Intraparenchymal Stem Cell Therapy in the Porcine Spinal Cord.
    Nagoshi N, Nakashima H, Fehlings MG.
    Neurosurgery; 2016 Feb 01; 78(2):E309. PubMed ID: 26540358
    [No Abstract] [Full Text] [Related]

  • 10. Expandable Sendai-Virus-Reprogrammed Human iPSC-Neuronal Precursors: In Vivo Post-Grafting Safety Characterization in Rats and Adult Pig.
    Kobayashi Y, Shigyo M, Platoshyn O, Marsala S, Kato T, Takamura N, Yoshida K, Kishino A, Bravo-Hernandez M, Juhas S, Juhasova J, Studenovska H, Proks V, Driscoll SP, Glenn TD, Pfaff SL, Ciacci JD, Marsala M.
    Cell Transplant; 2023 Feb 01; 32():9636897221107009. PubMed ID: 37088987
    [Abstract] [Full Text] [Related]

  • 11. Peripheral blood detection of systemic graft-specific xeno-antibodies following transplantation of human neural progenitor cells into the porcine spinal cord.
    Lamanna JJ, Gutierrez J, Espinosa JR, Wagner J, Urquia LN, Moreton C, Victor Hurtig C, Tora M, Kirk AD, Federici T, Boulis NM.
    J Clin Neurosci; 2018 Feb 01; 48():173-180. PubMed ID: 29089163
    [Abstract] [Full Text] [Related]

  • 12. Functional assessment of the acute local and distal transplantation of human neural stem cells after spinal cord injury.
    Cheng I, Mayle RE, Cox CA, Park DY, Smith RL, Corcoran-Schwartz I, Ponnusamy KE, Oshtory R, Smuck MW, Mitra R, Kharazi AI, Carragee EJ.
    Spine J; 2012 Nov 01; 12(11):1040-4. PubMed ID: 23063425
    [Abstract] [Full Text] [Related]

  • 13. Self-assembling peptides optimize the post-traumatic milieu and synergistically enhance the effects of neural stem cell therapy after cervical spinal cord injury.
    Zweckberger K, Ahuja CS, Liu Y, Wang J, Fehlings MG.
    Acta Biomater; 2016 Sep 15; 42():77-89. PubMed ID: 27296842
    [Abstract] [Full Text] [Related]

  • 14. Feasibility Study of Canine Epidermal Neural Crest Stem Cell Transplantation in the Spinal Cords of Dogs.
    McMahill BG, Spriet M, Sisó S, Manzer MD, Mitchell G, McGee J, Garcia TC, Borjesson DL, Sieber-Blum M, Nolta JA, Sturges BK.
    Stem Cells Transl Med; 2015 Oct 15; 4(10):1173-86. PubMed ID: 26273065
    [Abstract] [Full Text] [Related]

  • 15. Transplantation of adult rat spinal cord stem/progenitor cells for spinal cord injury.
    Parr AM, Kulbatski I, Tator CH.
    J Neurotrauma; 2007 May 15; 24(5):835-45. PubMed ID: 17518538
    [Abstract] [Full Text] [Related]

  • 16. Local versus distal transplantation of human neural stem cells following chronic spinal cord injury.
    Cheng I, Githens M, Smith RL, Johnston TR, Park DY, Stauff MP, Salari N, Tileston KR, Kharazi AI.
    Spine J; 2016 Jun 15; 16(6):764-9. PubMed ID: 26698654
    [Abstract] [Full Text] [Related]

  • 17. Transplantation of apoptosis-resistant embryonic stem cells into the injured rat spinal cord.
    Howard MJ, Liu S, Schottler F, Joy Snider B, Jacquin MF.
    Somatosens Mot Res; 2005 Jun 15; 22(1-2):37-44. PubMed ID: 16191756
    [Abstract] [Full Text] [Related]

  • 18. [TRANSPLANTATION OF NEURAL STEM CELLS INDUCED BY ALL-TRANS- RETINOIC ACID COMBINED WITH GLIAL CELL LINE DERIVED NEUROTROPHIC FACTOR AND CHONDROITINASE ABC FOR REPAIRING SPINAL CORD INJURY OF RATS].
    Liao Y, Zhong D, Kang M, Yao S, Zhang Y, Yu Y.
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2015 Aug 15; 29(8):1009-15. PubMed ID: 26677625
    [Abstract] [Full Text] [Related]

  • 19. Neural precursor cells can be delivered into the injured cervical spinal cord by intrathecal injection at the lumbar cord.
    Lepore AC, Bakshi A, Swanger SA, Rao MS, Fischer I.
    Brain Res; 2005 May 31; 1045(1-2):206-16. PubMed ID: 15910779
    [Abstract] [Full Text] [Related]

  • 20. Effects of the Post-Spinal Cord Injury Microenvironment on the Differentiation Capacity of Human Neural Stem Cells Derived from Induced Pluripotent Stem Cells.
    López-Serrano C, Torres-Espín A, Hernández J, Alvarez-Palomo AB, Requena J, Gasull X, Edel MJ, Navarro X.
    Cell Transplant; 2016 Oct 31; 25(10):1833-1852. PubMed ID: 27075820
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.