These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
443 related items for PubMed ID: 26139213
1. Cerebral blood velocity regulation during progressive blood loss compared with lower body negative pressure in humans. Rickards CA, Johnson BD, Harvey RE, Convertino VA, Joyner MJ, Barnes JN. J Appl Physiol (1985); 2015 Sep 15; 119(6):677-85. PubMed ID: 26139213 [Abstract] [Full Text] [Related]
2. Tolerance to central hypovolemia: the influence of oscillations in arterial pressure and cerebral blood velocity. Rickards CA, Ryan KL, Cooke WH, Convertino VA. J Appl Physiol (1985); 2011 Oct 15; 111(4):1048-58. PubMed ID: 21799129 [Abstract] [Full Text] [Related]
3. Cerebral Blood Flow Velocity During Combined Lower Body Negative Pressure and Cognitive Stress. Durocher JJ, Carter JR, Cooke WH, Young AH, Harwood MH. Aerosp Med Hum Perform; 2015 Aug 15; 86(8):688-92. PubMed ID: 26387891 [Abstract] [Full Text] [Related]
4. Coupling between arterial pressure, cerebral blood velocity, and cerebral tissue oxygenation with spontaneous and forced oscillations. Rickards CA, Sprick JD, Colby HB, Kay VL, Tzeng YC. Physiol Meas; 2015 Apr 15; 36(4):785-801. PubMed ID: 25798890 [Abstract] [Full Text] [Related]
5. A comparison of protocols for simulating hemorrhage in humans: step versus ramp lower body negative pressure. Rosenberg AJ, Kay VL, Anderson GK, Sprick JD, Rickards CA. J Appl Physiol (1985); 2021 Feb 01; 130(2):380-389. PubMed ID: 33211600 [Abstract] [Full Text] [Related]
9. The effect of oscillatory hemodynamics on the cardiovascular responses to simulated hemorrhage during isocapnia. Anderson GK, Davis KA, Bhuiyan N, Rusy R, Rosenberg AJ, Rickards CA. J Appl Physiol (1985); 2023 Dec 01; 135(6):1312-1322. PubMed ID: 37881852 [Abstract] [Full Text] [Related]
14. Slow breathing as a means to improve orthostatic tolerance: a randomized sham-controlled trial. Lucas SJ, Lewis NC, Sikken EL, Thomas KN, Ainslie PN. J Appl Physiol (1985); 2013 Jul 15; 115(2):202-11. PubMed ID: 23681913 [Abstract] [Full Text] [Related]
15. Acute volume expansion attenuates hyperthermia-induced reductions in cerebral perfusion during simulated hemorrhage. Schlader ZJ, Seifert T, Wilson TE, Bundgaard-Nielsen M, Secher NH, Crandall CG. J Appl Physiol (1985); 2013 Jun 15; 114(12):1730-5. PubMed ID: 23580601 [Abstract] [Full Text] [Related]
16. White blood cell concentrations during lower body negative pressure and blood loss in humans. van Helmond N, Johnson BD, Curry TB, Cap AP, Convertino VA, Joyner MJ. Exp Physiol; 2016 Oct 01; 101(10):1265-1275. PubMed ID: 27520090 [Abstract] [Full Text] [Related]
19. Responses of cerebral blood velocity and tissue oxygenation to low-frequency oscillations during simulated haemorrhagic stress in humans. Anderson GK, Sprick JD, Park FS, Rosenberg AJ, Rickards CA. Exp Physiol; 2019 Aug 01; 104(8):1190-1201. PubMed ID: 31090115 [Abstract] [Full Text] [Related]
20. Hemodynamic Stability to Surface Warming and Cooling During Sustained and Continuous Simulated Hemorrhage in Humans. Poh PY, Gagnon D, Romero SA, Convertino VA, Adams-Huet B, Crandall CG. Shock; 2016 Sep 01; 46(3 Suppl 1):42-9. PubMed ID: 27224744 [Abstract] [Full Text] [Related] Page: [Next] [New Search]