These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


621 related items for PubMed ID: 26139605

  • 21. Rapid-reaction kinetics of the bifurcating NAD+-dependent NADPH:ferredoxin oxidoreductase NfnI from Pyrococcus furiosus.
    Ortiz S, Niks D, Wiley S, Lubner CE, Hille R.
    J Biol Chem; 2023 Dec; 299(12):105403. PubMed ID: 38229399
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
    McLean KJ, Scrutton NS, Munro AW.
    Biochem J; 2003 Jun 01; 372(Pt 2):317-27. PubMed ID: 12614197
    [Abstract] [Full Text] [Related]

  • 24. Modulations of the reduction potentials of flavin-based electron bifurcation complexes and semiquinone stabilities are key to control directional electron flow.
    Sucharitakul J, Buttranon S, Wongnate T, Chowdhury NP, Prongjit M, Buckel W, Chaiyen P.
    FEBS J; 2021 Feb 01; 288(3):1008-1026. PubMed ID: 32329961
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Molecular basis of the flavin-based electron-bifurcating caffeyl-CoA reductase reaction.
    Demmer JK, Bertsch J, Öppinger C, Wohlers H, Kayastha K, Demmer U, Ermler U, Müller V.
    FEBS Lett; 2018 Feb 01; 592(3):332-342. PubMed ID: 29325219
    [Abstract] [Full Text] [Related]

  • 28. Reduction of Flavodoxin by Electron Bifurcation and Sodium Ion-dependent Reoxidation by NAD+ Catalyzed by Ferredoxin-NAD+ Reductase (Rnf).
    Chowdhury NP, Klomann K, Seubert A, Buckel W.
    J Biol Chem; 2016 Jun 03; 291(23):11993-2002. PubMed ID: 27048649
    [Abstract] [Full Text] [Related]

  • 29. Determination of the midpoint potential of the FAD and FMN flavin cofactors and of the 3Fe-4S cluster of glutamate synthase.
    Ravasio S, Curti B, Vanoni MA.
    Biochemistry; 2001 May 08; 40(18):5533-41. PubMed ID: 11331018
    [Abstract] [Full Text] [Related]

  • 30. Expression, purification and crystal structure determination of a ferredoxin reductase from the actinobacterium Thermobifida fusca.
    Rodriguez Buitrago JA, Klünemann T, Blankenfeldt W, Schallmey A.
    Acta Crystallogr F Struct Biol Commun; 2020 Aug 01; 76(Pt 8):334-340. PubMed ID: 32744244
    [Abstract] [Full Text] [Related]

  • 31. External loops at the ferredoxin-NADP(+) reductase protein-partner binding cavity contribute to substrates allocation.
    Sánchez-Azqueta A, Martínez-Júlvez M, Hervás M, Navarro JA, Medina M.
    Biochim Biophys Acta; 2014 Feb 01; 1837(2):296-305. PubMed ID: 24321506
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Reduction of ferredoxin or oxygen by flavin-based electron bifurcation in Megasphaera elsdenii.
    Chowdhury NP, Kahnt J, Buckel W.
    FEBS J; 2015 Aug 01; 282(16):3149-60. PubMed ID: 25903584
    [Abstract] [Full Text] [Related]

  • 34. Flavin-Based Electron Bifurcation, A New Mechanism of Biological Energy Coupling.
    Buckel W, Thauer RK.
    Chem Rev; 2018 Apr 11; 118(7):3862-3886. PubMed ID: 29561602
    [Abstract] [Full Text] [Related]

  • 35. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O, Scrutton NS, Munro AW.
    Biochemistry; 2003 Sep 16; 42(36):10809-21. PubMed ID: 12962506
    [Abstract] [Full Text] [Related]

  • 36. Electron bifurcation involved in the energy metabolism of the acetogenic bacterium Moorella thermoacetica growing on glucose or H2 plus CO2.
    Huang H, Wang S, Moll J, Thauer RK.
    J Bacteriol; 2012 Jul 16; 194(14):3689-99. PubMed ID: 22582275
    [Abstract] [Full Text] [Related]

  • 37. Rapid kinetics reveal surprising flavin chemistry in bifurcating electron transfer flavoprotein from Acidaminococcus fermentans.
    Sucharitakul J, Buckel W, Chaiyen P.
    J Biol Chem; 2021 Jul 16; 296():100124. PubMed ID: 33239361
    [Abstract] [Full Text] [Related]

  • 38. Elucidations of the catalytic cycle of NADH-cytochrome b5 reductase by X-ray crystallography: new insights into regulation of efficient electron transfer.
    Yamada M, Tamada T, Takeda K, Matsumoto F, Ohno H, Kosugi M, Takaba K, Shoyama Y, Kimura S, Kuroki R, Miki K.
    J Mol Biol; 2013 Nov 15; 425(22):4295-306. PubMed ID: 23831226
    [Abstract] [Full Text] [Related]

  • 39. A hydrogen bond network in the active site of Anabaena ferredoxin-NADP(+) reductase modulates its catalytic efficiency.
    Sánchez-Azqueta A, Herguedas B, Hurtado-Guerrero R, Hervás M, Navarro JA, Martínez-Júlvez M, Medina M.
    Biochim Biophys Acta; 2014 Feb 15; 1837(2):251-63. PubMed ID: 24200908
    [Abstract] [Full Text] [Related]

  • 40. Mechanism of coenzyme binding to human methionine synthase reductase revealed through the crystal structure of the FNR-like module and isothermal titration calorimetry.
    Wolthers KR, Lou X, Toogood HS, Leys D, Scrutton NS.
    Biochemistry; 2007 Oct 23; 46(42):11833-44. PubMed ID: 17892308
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 32.