These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
133 related items for PubMed ID: 26139613
1. Optimization of Influencing Factors on Biomass Accumulation and 5-Aminolevulinic Acid (ALA) Yield in Rhodobacter sphaeroides Wastewater Treatment. Liu S, Li X, Zhang G, Zhang J. J Microbiol Biotechnol; 2015 Nov; 25(11):1920-7. PubMed ID: 26139613 [Abstract] [Full Text] [Related]
3. Impacts of Fe2+ on 5-aminolevulinic acid (ALA) biosynthesis of Rhodobacter sphaeroides in wastewater treatment by regulating nif gene expression. Liu S, Zheng Z, Tie J, Kang J, Zhang G, Zhang J. J Environ Sci (China); 2018 Aug; 70():11-19. PubMed ID: 30037398 [Abstract] [Full Text] [Related]
6. Enhancement of Rhodobacter sphaeroides growth and carotenoid production through biostimulation. Liu S, Zhang G, Li X, Wu P, Zhang J. J Environ Sci (China); 2015 Jul 01; 33():21-8. PubMed ID: 26141874 [Abstract] [Full Text] [Related]
7. Biosynthesis of intracellular 5-aminolevulinic acid by a newly identified halotolerant Rhodobacter sphaeroides. Tangprasittipap A, Prasertsan P, Choorit W, Sasaki K. Biotechnol Lett; 2007 May 01; 29(5):773-8. PubMed ID: 17245554 [Abstract] [Full Text] [Related]
8. Free Fe(3+)/Fe(2+) improved the biomass resource recovery and organic matter removal in Rhodobacter sphaeroides purification of sewage. Liu R, Wu P, Lang L, Xu C, Wang Y. Environ Technol; 2016 May 01; 37(1):108-13. PubMed ID: 26565434 [Abstract] [Full Text] [Related]
9. Effect of magnesium ion on crt gene expression in improving carotenoid yield of Rhodobacter sphaeroides. Liu S, Li X, Zhang G, Zhang J. Arch Microbiol; 2015 Nov 01; 197(9):1101-8. PubMed ID: 26371061 [Abstract] [Full Text] [Related]
12. Carbaryl waste-water treatment by Rhodopseudomonas sphaeroides. Wu P, Chen Z, Zhang Y, Wang Y, Zhu F, Cao B, Jin L, Hou Y, Wu Y, Li N. Chemosphere; 2019 Oct 01; 233():597-602. PubMed ID: 31195264 [Abstract] [Full Text] [Related]
14. Construction of the Rhodobacter sphaeroides strain overproducing 5-aminolevulinic acid by insertion of endogenous promoter. Kojima T, Masuda S. J Gen Appl Microbiol; 2024 Mar 07; 69(5):270-277. PubMed ID: 37482422 [Abstract] [Full Text] [Related]
15. Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Sasaki K, Watanabe M, Tanaka T, Tanaka T. Appl Microbiol Biotechnol; 2002 Jan 07; 58(1):23-9. PubMed ID: 11831472 [Abstract] [Full Text] [Related]
16. Biological formation of 5-aminolevulinic acid by photosynthetic bacteria. Liu XY, Xu XY, Ma QL, Wu WH. J Environ Sci (China); 2005 Jan 07; 17(1):152-5. PubMed ID: 15900779 [Abstract] [Full Text] [Related]
19. Mg2+ improves biomass production from soybean wastewater using purple non-sulfur bacteria. Wu P, Zhang G, Li J. J Environ Sci (China); 2015 Feb 01; 28():43-6. PubMed ID: 25662237 [Abstract] [Full Text] [Related]
20. Treatment of anaerobically digested swine wastewater by Rhodobacter blasticus and Rhodobacter capsulatus. Wen S, Liu H, He H, Luo L, Li X, Zeng G, Zhou Z, Lou W, Yang C. Bioresour Technol; 2016 Dec 01; 222():33-38. PubMed ID: 27697735 [Abstract] [Full Text] [Related] Page: [Next] [New Search]