These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
348 related items for PubMed ID: 26148527
1. Highly selective and sensitive nanoprobes for cyanide based on gold nanoclusters with red fluorescence emission. Zhang G, Qiao Y, Xu T, Zhang C, Zhang Y, Shi L, Shuang S, Dong C. Nanoscale; 2015 Aug 07; 7(29):12666-72. PubMed ID: 26148527 [Abstract] [Full Text] [Related]
2. Efficient On-Off Ratiometric Fluorescence Probe for Cyanide Ion Based on Perturbation of the Interaction between Gold Nanoclusters and a Copper(II)-Phthalocyanine Complex. Shojaeifard Z, Hemmateenejad B, Shamsipur M. ACS Appl Mater Interfaces; 2016 Jun 22; 8(24):15177-86. PubMed ID: 27211049 [Abstract] [Full Text] [Related]
3. Lysozyme-stabilized gold nanoclusters as a novel fluorescence probe for cyanide recognition. Lu D, Liu L, Li F, Shuang S, Li Y, Choi MM, Dong C. Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jun 22; 121():77-80. PubMed ID: 24231741 [Abstract] [Full Text] [Related]
4. Ratiometric and sensitive cyanide sensing using dual-emissive gold nanoclusters. Yang H, Yang Y, Liu S, Zhan X, Zhou H, Li X, Yuan Z. Anal Bioanal Chem; 2020 Sep 22; 412(23):5819-5826. PubMed ID: 32666140 [Abstract] [Full Text] [Related]
5. Sensitive detection of cyanide using bovine serum albumin-stabilized cerium/gold nanoclusters. Wang CW, Chen YN, Wu BY, Lee CK, Chen YC, Huang YH, Chang HT. Anal Bioanal Chem; 2016 Jan 22; 408(1):287-94. PubMed ID: 26507328 [Abstract] [Full Text] [Related]
6. Novel bimetallic gold-silver nanoclusters with "Synergy"-enhanced fluorescence for cyanide sensing, cell imaging and temperature sensing. Tian L, Li Y, Ren T, Tong Y, Yang B, Li Y. Talanta; 2017 Aug 01; 170():530-539. PubMed ID: 28501207 [Abstract] [Full Text] [Related]
7. A ratiometric fluorescent probe for sensitive, selective and reversible detection of copper (II) based on riboflavin-stabilized gold nanoclusters. Zhang M, Le HN, Jiang XQ, Guo SM, Yu HJ, Ye BC. Talanta; 2013 Dec 15; 117():399-404. PubMed ID: 24209359 [Abstract] [Full Text] [Related]
8. Selective detection of iodide and cyanide anions using gold-nanoparticle-based fluorescent probes. Wei SC, Hsu PH, Lee YF, Lin YW, Huang CC. ACS Appl Mater Interfaces; 2012 May 15; 4(5):2652-8. PubMed ID: 22524233 [Abstract] [Full Text] [Related]
9. A highly sensitive and selective fluorescent probe for cyanide based on the dissolution of gold nanoparticles and its application in real samples. Lou X, Zhang Y, Qin J, Li Z. Chemistry; 2011 Aug 22; 17(35):9691-6. PubMed ID: 21735497 [Abstract] [Full Text] [Related]
10. Synthesis of gold nanoclusters-loaded lysozyme nanoparticles for ratiometric fluorescent detection of cyanide in tap water, cyanogenic glycoside-containing plants, and soils. Tseng WB, Rau JY, Chiou HC, Tseng WL. Environ Res; 2022 May 01; 207():112144. PubMed ID: 34619120 [Abstract] [Full Text] [Related]
11. UV-Light-Induced Improvement of Fluorescence Quantum Yield of DNA-Templated Gold Nanoclusters: Application to Ratiometric Fluorescent Sensing of Nucleic Acids. Li ZY, Wu YT, Tseng WL. ACS Appl Mater Interfaces; 2015 Oct 28; 7(42):23708-16. PubMed ID: 26443919 [Abstract] [Full Text] [Related]
12. Ratiometric fluorescence detection of Cu2+ based on carbon dots/bovine serum albumin-Au nanoclusters. Yang L, Zeng M, Du Y, Wang L, Peng B. Luminescence; 2018 Nov 28; 33(7):1268-1274. PubMed ID: 30338624 [Abstract] [Full Text] [Related]
13. Protein-Localized Bright-Red Fluorescent Gold Nanoclusters as Cyanide-Selective Colorimetric and Fluorometric Nanoprobes. Rajamanikandan R, Ilanchelian M. ACS Omega; 2018 Oct 31; 3(10):14111-14118. PubMed ID: 31458104 [Abstract] [Full Text] [Related]
14. Facile preparation of high-quantum-yield gold nanoclusters: application to probing mercuric ions and biothiols. Chang HC, Chang YF, Fan NC, Ho JA. ACS Appl Mater Interfaces; 2014 Oct 31; 6(21):18824-31. PubMed ID: 25323388 [Abstract] [Full Text] [Related]
15. A label-free fluorescent assay for free chlorine in drinking water based on protein-stabilized gold nanoclusters. Xiong X, Tang Y, Zhang L, Zhao S. Talanta; 2015 Jan 31; 132():790-5. PubMed ID: 25476379 [Abstract] [Full Text] [Related]
16. Dual-functional Au-Fe3O4 dumbbell nanoparticles for sensitive and selective turn-on fluorescent detection of cyanide based on the inner filter effect. Zhai Y, Jin L, Wang P, Dong S. Chem Commun (Camb); 2011 Aug 07; 47(29):8268-70. PubMed ID: 21695338 [Abstract] [Full Text] [Related]
17. Spectrofluorometric determination of berberine using a novel Au nanocluster with large Stokes shift. Wen A, Peng X, Zhang P, Long Y, Gong H, Xie Q, Yue M, Chen S. Anal Bioanal Chem; 2018 Oct 07; 410(25):6489-6495. PubMed ID: 30022234 [Abstract] [Full Text] [Related]
18. Highly selective and ultrasensitive detection of Hg(2+) based on fluorescence quenching of Au nanoclusters by Hg(2+)-Au(+) interactions. Xie J, Zheng Y, Ying JY. Chem Commun (Camb); 2010 Feb 14; 46(6):961-3. PubMed ID: 20107664 [Abstract] [Full Text] [Related]
19. Blue-emitting copper nanoparticles as a fluorescent probe for detection of cyanide ions. Momeni S, Ahmadi R, Safavi A, Nabipour I. Talanta; 2017 Dec 01; 175():514-521. PubMed ID: 28842026 [Abstract] [Full Text] [Related]
20. Fluorescent "turn-on" detecting CN(-) by nucleophilic addition induced Schiff-base hydrolysis. Lin Q, Cai Y, Li Q, Shi BB, Yao H, Zhang YM, Wei TB. Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr 15; 141():113-8. PubMed ID: 25668691 [Abstract] [Full Text] [Related] Page: [Next] [New Search]