These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


317 related items for PubMed ID: 26152758

  • 1. Boron-Catalyzed Silylative Reduction of Nitriles in Accessing Primary Amines and Imines.
    Gandhamsetty N, Jeong J, Park J, Park S, Chang S.
    J Org Chem; 2015 Jul 17; 80(14):7281-7. PubMed ID: 26152758
    [Abstract] [Full Text] [Related]

  • 2. Catalytic coupling of nitriles with amines to selectively form imines under mild hydrogen pressure.
    Srimani D, Feller M, Ben-David Y, Milstein D.
    Chem Commun (Camb); 2012 Dec 18; 48(97):11853-5. PubMed ID: 23125982
    [Abstract] [Full Text] [Related]

  • 3. Azobisisobutyronitrile initiated aerobic oxidative transformation of amines: coupling of primary amines and cyanation of tertiary amines.
    Liu L, Wang Z, Fu X, Yan CH.
    Org Lett; 2012 Nov 16; 14(22):5692-5. PubMed ID: 23106189
    [Abstract] [Full Text] [Related]

  • 4. Cyclocondensation of amino-propargyl silanes.
    Wang Y, Ready JM.
    Org Lett; 2012 May 04; 14(9):2308-11. PubMed ID: 22506695
    [Abstract] [Full Text] [Related]

  • 5. Chemoselective Silylative Reduction of Conjugated Nitriles under Metal-Free Catalytic Conditions: β-Silyl Amines and Enamines.
    Gandhamsetty N, Park J, Jeong J, Park SW, Park S, Chang S.
    Angew Chem Int Ed Engl; 2015 Jun 01; 54(23):6832-6. PubMed ID: 25907098
    [Abstract] [Full Text] [Related]

  • 6. Iron-catalyzed direct synthesis of imines from amines or alcohols and amines via aerobic oxidative reactions under air.
    Zhang E, Tian H, Xu S, Yu X, Xu Q.
    Org Lett; 2013 Jun 07; 15(11):2704-7. PubMed ID: 23683112
    [Abstract] [Full Text] [Related]

  • 7. Highly stereoselective metal-free catalytic reduction of imines: an easy entry to enantiomerically pure amines and natural and unnatural alpha-amino esters.
    Guizzetti S, Benaglia M, Rossi S.
    Org Lett; 2009 Jul 02; 11(13):2928-31. PubMed ID: 19480447
    [Abstract] [Full Text] [Related]

  • 8. LIC-KOR-promoted synthesis of alkoxydienyl amines: an entry to 2,3,4,5-tetrasubstituted pyrroles.
    Blangetti M, Deagostino A, Prandi C, Tabasso S, Venturello P.
    Org Lett; 2009 Sep 03; 11(17):3914-7. PubMed ID: 19655734
    [Abstract] [Full Text] [Related]

  • 9. Selective N-alkylation of amines using nitriles under hydrogenation conditions: facile synthesis of secondary and tertiary amines.
    Ikawa T, Fujita Y, Mizusaki T, Betsuin S, Takamatsu H, Maegawa T, Monguchi Y, Sajiki H.
    Org Biomol Chem; 2012 Jan 14; 10(2):293-304. PubMed ID: 22068239
    [Abstract] [Full Text] [Related]

  • 10. Chiral phosphoric acid catalyzed transfer hydrogenation: facile synthetic access to highly optically active trifluoromethylated amines.
    Henseler A, Kato M, Mori K, Akiyama T.
    Angew Chem Int Ed Engl; 2011 Aug 22; 50(35):8180-3. PubMed ID: 21748836
    [Abstract] [Full Text] [Related]

  • 11. Asymmetric reduction of imines with trichlorosilane, catalyzed by sigamide, an amino acid-derived formamide: scope and limitations.
    Malkov AV, Vranková K, Stoncius S, Kocovský P.
    J Org Chem; 2009 Aug 21; 74(16):5839-49. PubMed ID: 19530670
    [Abstract] [Full Text] [Related]

  • 12. Environmentally friendly chemoselective oxidation of primary aliphatic amines by using a biomimetic electrocatalytic system.
    Largeron M, Chiaroni A, Fleury MB.
    Chemistry; 2008 Aug 21; 14(3):996-1003. PubMed ID: 17992680
    [Abstract] [Full Text] [Related]

  • 13. Boron-Catalyzed N-Alkylation of Amines using Carboxylic Acids.
    Fu MC, Shang R, Cheng WM, Fu Y.
    Angew Chem Int Ed Engl; 2015 Jul 27; 54(31):9042-6. PubMed ID: 26150397
    [Abstract] [Full Text] [Related]

  • 14. Palladium-catalyzed aerobic dehydrogenative aromatization of cyclohexanone imines to arylamines.
    Hajra A, Wei Y, Yoshikai N.
    Org Lett; 2012 Nov 02; 14(21):5488-91. PubMed ID: 23072451
    [Abstract] [Full Text] [Related]

  • 15. Photocatalytic organic transformation by layered double hydroxides: highly efficient and selective oxidation of primary aromatic amines to their imines under ambient aerobic conditions.
    Yang XJ, Chen B, Li XB, Zheng LQ, Wu LZ, Tung CH.
    Chem Commun (Camb); 2014 Jun 25; 50(50):6664-7. PubMed ID: 24827163
    [Abstract] [Full Text] [Related]

  • 16. Cross-Coupling of Alkyl Redox-Active Esters with Benzophenone Imines: Tandem Photoredox and Copper Catalysis.
    Mao R, Balon J, Hu X.
    Angew Chem Int Ed Engl; 2018 Jul 20; 57(30):9501-9504. PubMed ID: 29863760
    [Abstract] [Full Text] [Related]

  • 17. Reductive and catalytic monoalkylation of primary amines using nitriles as an alkylating reagent.
    Sajiki H, Ikawa T, Hirota K.
    Org Lett; 2004 Dec 23; 6(26):4977-80. PubMed ID: 15606114
    [Abstract] [Full Text] [Related]

  • 18. Highly enantioselective Rh-catalyzed alkenylation of imines: synthesis of chiral allylic amines via asymmetric addition of potassium alkenyltrifluoroborates to N-tosyl imines.
    Gopula B, Chiang CW, Lee WZ, Kuo TS, Wu PY, Henschke JP, Wu HL.
    Org Lett; 2014 Jan 17; 16(2):632-5. PubMed ID: 24377882
    [Abstract] [Full Text] [Related]

  • 19. New P,N-ferrocenyl ligands for the asymmetric Ir-catalyzed hydrogenation of imines.
    Cheemala MN, Knochel P.
    Org Lett; 2007 Aug 02; 9(16):3089-92. PubMed ID: 17616202
    [Abstract] [Full Text] [Related]

  • 20. Zinc-catalyzed chemoselective reduction of tertiary and secondary amides to amines.
    Das S, Addis D, Junge K, Beller M.
    Chemistry; 2011 Oct 17; 17(43):12186-92. PubMed ID: 21915925
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.