These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


245 related items for PubMed ID: 26155915

  • 1. Three-dimensional macro-scale assessment of regional and temporal wall shear stress characteristics on aortic valve leaflets.
    Cao K, Bukač M, Sucosky P.
    Comput Methods Biomech Biomed Engin; 2016; 19(6):603-13. PubMed ID: 26155915
    [Abstract] [Full Text] [Related]

  • 2. Computational comparison of regional stress and deformation characteristics in tricuspid and bicuspid aortic valve leaflets.
    Cao K, Sucosky P.
    Int J Numer Method Biomed Eng; 2017 Mar; 33(3):. PubMed ID: 27138991
    [Abstract] [Full Text] [Related]

  • 3. Computational assessment of bicuspid aortic valve wall-shear stress: implications for calcific aortic valve disease.
    Chandra S, Rajamannan NM, Sucosky P.
    Biomech Model Mechanobiol; 2012 Sep; 11(7):1085-96. PubMed ID: 22294208
    [Abstract] [Full Text] [Related]

  • 4. A novel in vivo assessment of fluid dynamics on aortic valve leaflet using epi-aortic echocardiogram.
    Hayashi H, Akiyama K, Itatani K, DeRoo S, Sanchez J, Ferrari G, Colombo PC, Takeda K, Wu IY, Kainuma A, Takayama H.
    Echocardiography; 2020 Feb; 37(2):323-330. PubMed ID: 32003907
    [Abstract] [Full Text] [Related]

  • 5. Wall Shear Stress Directional Abnormalities in BAV Aortas: Toward a New Hemodynamic Predictor of Aortopathy?
    Liu J, Shar JA, Sucosky P.
    Front Physiol; 2018 Feb; 9():993. PubMed ID: 30154723
    [Abstract] [Full Text] [Related]

  • 6. Influence of aneurysmal aortic root geometry on mechanical stress to the aortic valve leaflet.
    Hayashi H, Itatani K, Akiyama K, Zhao Y, Kurlansky P, DeRoo S, Sanchez J, Ferrari G, Yuzefpolskaya M, Colombo PC, Takeda K, Wu IY, Kainuma A, Takayama H.
    Eur Heart J Cardiovasc Imaging; 2021 Aug 14; 22(9):986-994. PubMed ID: 33611382
    [Abstract] [Full Text] [Related]

  • 7. Experimental technique of measuring dynamic fluid shear stress on the aortic surface of the aortic valve leaflet.
    Yap CH, Saikrishnan N, Tamilselvan G, Yoganathan AP.
    J Biomech Eng; 2011 Jun 14; 133(6):061007. PubMed ID: 21744927
    [Abstract] [Full Text] [Related]

  • 8. Aortic valve leaflet wall shear stress characterization revisited: impact of coronary flow.
    Cao K, Sucosky P.
    Comput Methods Biomech Biomed Engin; 2017 Apr 14; 20(5):468-470. PubMed ID: 27712083
    [Abstract] [Full Text] [Related]

  • 9. Computational Assessment of Valvular Dysfunction in Discrete Subaortic Stenosis: A Parametric Study.
    Shar JA, Keswani SG, Grande-Allen KJ, Sucosky P.
    Cardiovasc Eng Technol; 2021 Dec 14; 12(6):559-575. PubMed ID: 33432514
    [Abstract] [Full Text] [Related]

  • 10. Experimental measurement of dynamic fluid shear stress on the aortic surface of the aortic valve leaflet.
    Yap CH, Saikrishnan N, Tamilselvan G, Yoganathan AP.
    Biomech Model Mechanobiol; 2012 Jan 14; 11(1-2):171-82. PubMed ID: 21416247
    [Abstract] [Full Text] [Related]

  • 11. Experimental measurement of dynamic fluid shear stress on the ventricular surface of the aortic valve leaflet.
    Yap CH, Saikrishnan N, Yoganathan AP.
    Biomech Model Mechanobiol; 2012 Jan 14; 11(1-2):231-44. PubMed ID: 21465260
    [Abstract] [Full Text] [Related]

  • 12. Fluid structure interaction modelling of aortic valve stenosis: Effects of valve calcification on coronary artery flow and aortic root hemodynamics.
    Kivi AR, Sedaghatizadeh N, Cazzolato BS, Zander AC, Roberts-Thomson R, Nelson AJ, Arjomandi M.
    Comput Methods Programs Biomed; 2020 Nov 14; 196():105647. PubMed ID: 32688138
    [Abstract] [Full Text] [Related]

  • 13. Computational fluid dynamics simulation of transcatheter aortic valve degeneration.
    Dwyer HA, Matthews PB, Azadani A, Jaussaud N, Ge L, Guy TS, Tseng EE.
    Interact Cardiovasc Thorac Surg; 2009 Aug 14; 9(2):301-8. PubMed ID: 19414489
    [Abstract] [Full Text] [Related]

  • 14. Low wall shear stress predominates at sites of abdominal aortic aneurysm rupture.
    Boyd AJ, Kuhn DC, Lozowy RJ, Kulbisky GP.
    J Vasc Surg; 2016 Jun 14; 63(6):1613-9. PubMed ID: 25752691
    [Abstract] [Full Text] [Related]

  • 15. Importance of Non-Newtonian Computational Fluid Modeling on Severely Calcified Aortic Valve Geometries-Insights From Quasi-Steady State Simulations.
    Mirza A, Ramaswamy S.
    J Biomech Eng; 2022 Nov 01; 144(11):. PubMed ID: 35599346
    [Abstract] [Full Text] [Related]

  • 16. Novel modular anastomotic valve device for hemodialysis vascular access: preliminary computational hemodynamic assessment.
    McNally A, Akingba AG, Robinson EA, Sucosky P.
    J Vasc Access; 2014 Nov 01; 15(6):448-60. PubMed ID: 25198822
    [Abstract] [Full Text] [Related]

  • 17. Is zero-pressure fixation of bioprosthetic valves truly stress free?
    Vesely I, Lozon A, Talman E.
    J Thorac Cardiovasc Surg; 1993 Aug 01; 106(2):288-98. PubMed ID: 8341070
    [Abstract] [Full Text] [Related]

  • 18. Flow and wall shear stress characterization after endovascular aneurysm repair and endovascular aneurysm sealing in an infrarenal aneurysm model.
    Boersen JT, Groot Jebbink E, Versluis M, Slump CH, Ku DN, de Vries JPM, Reijnen MMPJ.
    J Vasc Surg; 2017 Dec 01; 66(6):1844-1853. PubMed ID: 28285931
    [Abstract] [Full Text] [Related]

  • 19. The Influence of Valve Leaflet Stiffness Variability on Aortic Wall Shear Stress.
    Rosakis A, Gharib M.
    Ann Biomed Eng; 2022 Jan 01; 50(1):29-38. PubMed ID: 34993697
    [Abstract] [Full Text] [Related]

  • 20. In vivo assessment of wall shear stress in the atherosclerotic aorta using flow-sensitive 4D MRI.
    Harloff A, Nussbaumer A, Bauer S, Stalder AF, Frydrychowicz A, Weiller C, Hennig J, Markl M.
    Magn Reson Med; 2010 Jun 01; 63(6):1529-36. PubMed ID: 20512856
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.