These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
151 related items for PubMed ID: 26159059
21. A numerical analysis of phonation using a two-dimensional flexible channel model of the vocal folds. Ikeda T, Matsuzaki Y, Aomatsu T. J Biomech Eng; 2001 Dec; 123(6):571-9. PubMed ID: 11783728 [Abstract] [Full Text] [Related]
22. Effect of vocal fold stiffness on voice production in a three-dimensional body-cover phonation model. Zhang Z. J Acoust Soc Am; 2017 Oct; 142(4):2311. PubMed ID: 29092586 [Abstract] [Full Text] [Related]
23. Characterization of the Continuous Elastic Parameters of Porcine Vocal Folds. Burks G, De Vita R, Leonessa A. J Voice; 2020 Jan; 34(1):1-8. PubMed ID: 30446272 [Abstract] [Full Text] [Related]
24. Vocal instabilities in a three-dimensional body-cover phonation model. Zhang Z. J Acoust Soc Am; 2018 Sep; 144(3):1216. PubMed ID: 30424612 [Abstract] [Full Text] [Related]
25. Measurement of vocal folds elastic properties for continuum modeling. Alipour F, Vigmostad S. J Voice; 2012 Nov; 26(6):816.e21-9. PubMed ID: 22921299 [Abstract] [Full Text] [Related]
26. Influence of a constriction in the near field of the vocal folds: physical modeling and experimental validation. Bailly L, Pelorson X, Henrich N, Ruty N. J Acoust Soc Am; 2008 Nov; 124(5):3296-308. PubMed ID: 19045812 [Abstract] [Full Text] [Related]
27. Validation of theoretical models of phonation threshold pressure with data from a vocal fold mechanical replica. Lucero JC, Van Hirtum A, Ruty N, Cisonni J, Pelorson X. J Acoust Soc Am; 2009 Feb; 125(2):632-5. PubMed ID: 19206840 [Abstract] [Full Text] [Related]
31. A computational study of the effect of vocal-fold asymmetry on phonation. Xue Q, Mittal R, Zheng X, Bielamowicz S. J Acoust Soc Am; 2010 Aug; 128(2):818-27. PubMed ID: 20707451 [Abstract] [Full Text] [Related]
32. A Computational Study of Vocal Fold Dehydration During Phonation. Wu L, Zhang Z. IEEE Trans Biomed Eng; 2017 Dec; 64(12):2938-2948. PubMed ID: 28391188 [Abstract] [Full Text] [Related]
33. A lumped mucosal wave model of the vocal folds revisited: recent extensions and oscillation hysteresis. Lucero JC, Koenig LL, Lourenço KG, Ruty N, Pelorson X. J Acoust Soc Am; 2011 Mar; 129(3):1568-79. PubMed ID: 21428520 [Abstract] [Full Text] [Related]
35. Effect of inferior surface angle on the self-oscillation of a computational vocal fold model. Smith SL, Thomson SL. J Acoust Soc Am; 2012 May; 131(5):4062-75. PubMed ID: 22559379 [Abstract] [Full Text] [Related]
36. Effects of poroelastic coefficients on normal vibration modes in vocal-fold tissues. Tao C, Liu X. J Acoust Soc Am; 2011 Feb; 129(2):934-43. PubMed ID: 21361450 [Abstract] [Full Text] [Related]
37. Simulations of temporal patterns of oral airflow in men and women using a two-mass model of the vocal folds under dynamic control. Lucero JC, Koenig LL. J Acoust Soc Am; 2005 Mar; 117(3 Pt 1):1362-72. PubMed ID: 15807024 [Abstract] [Full Text] [Related]
38. Optimized transformation of the glottal motion into a mechanical model. Triep M, Brücker C, Stingl M, Döllinger M. Med Eng Phys; 2011 Mar; 33(2):210-7. PubMed ID: 21115384 [Abstract] [Full Text] [Related]
39. Vibrational dynamics of vocal folds using nonlinear normal modes. Pinheiro AP, Kerschen G. Med Eng Phys; 2013 Aug; 35(8):1079-88. PubMed ID: 23218815 [Abstract] [Full Text] [Related]
40. Flow-induced vibratory response of idealized versus magnetic resonance imaging-based synthetic vocal fold models. Pickup BA, Thomson SL. J Acoust Soc Am; 2010 Sep; 128(3):EL124-9. PubMed ID: 20815428 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]