These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


654 related items for PubMed ID: 26159422

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Characterization of the guanine-N7 methyltransferase activity of coronavirus nsp14 on nucleotide GTP.
    Jin X, Chen Y, Sun Y, Zeng C, Wang Y, Tao J, Wu A, Yu X, Zhang Z, Tian J, Guo D.
    Virus Res; 2013 Sep; 176(1-2):45-52. PubMed ID: 23702198
    [Abstract] [Full Text] [Related]

  • 24. Structure-based virtual screening and molecular dynamics simulation of SARS-CoV-2 Guanine-N7 methyltransferase (nsp14) for identifying antiviral inhibitors against COVID-19.
    Selvaraj C, Dinesh DC, Panwar U, Abhirami R, Boura E, Singh SK.
    J Biomol Struct Dyn; 2021 Aug; 39(13):4582-4593. PubMed ID: 32567979
    [Abstract] [Full Text] [Related]

  • 25. Potent Inhibition of SARS-CoV-2 nsp14 N7-Methyltransferase by Sulfonamide-Based Bisubstrate Analogues.
    Ahmed-Belkacem R, Hausdorff M, Delpal A, Sutto-Ortiz P, Colmant AMG, Touret F, Ogando NS, Snijder EJ, Canard B, Coutard B, Vasseur JJ, Decroly E, Debart F.
    J Med Chem; 2022 Apr 28; 65(8):6231-6249. PubMed ID: 35439007
    [Abstract] [Full Text] [Related]

  • 26. Binding of the Methyl Donor S-Adenosyl-l-Methionine to Middle East Respiratory Syndrome Coronavirus 2'-O-Methyltransferase nsp16 Promotes Recruitment of the Allosteric Activator nsp10.
    Aouadi W, Blanjoie A, Vasseur JJ, Debart F, Canard B, Decroly E.
    J Virol; 2017 Mar 01; 91(5):. PubMed ID: 28031370
    [Abstract] [Full Text] [Related]

  • 27. New insights into complex formation by SARS-CoV-2 nsp10 and nsp14.
    Sele C, Krupinska E, Andersson Rasmussen A, Ekström S, Hultgren L, Lou J, Kozielski F, Fisher SZ, Knecht W.
    Nucleosides Nucleotides Nucleic Acids; 2024 Mar 01; 43(8):798-812. PubMed ID: 38422227
    [Abstract] [Full Text] [Related]

  • 28. Synthetic Platforms for Characterizing and Targeting of SARS-CoV-2 Genome Capping Enzymes.
    Ornelas MY, Thomas AY, Johnson Rosas LI, Scoville RO, Mehta AP.
    ACS Synth Biol; 2022 Nov 18; 11(11):3759-3771. PubMed ID: 36331143
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Characterization of the SARS-CoV-2 ExoN (nsp14ExoN-nsp10) complex: implications for its role in viral genome stability and inhibitor identification.
    Baddock HT, Brolih S, Yosaatmadja Y, Ratnaweera M, Bielinski M, Swift LP, Cruz-Migoni A, Fan H, Keown JR, Walker AP, Morris GM, Grimes JM, Fodor E, Schofield CJ, Gileadi O, McHugh PJ.
    Nucleic Acids Res; 2022 Feb 22; 50(3):1484-1500. PubMed ID: 35037045
    [Abstract] [Full Text] [Related]

  • 31. A Computational Study on the Interaction of NSP10 and NSP14: Unraveling the RNA Synthesis Proofreading Mechanism in SARS-CoV-2, SARS-CoV, and MERS-CoV.
    Sarma H, Sastry GN.
    ACS Omega; 2022 Aug 30; 7(34):30003-30022. PubMed ID: 36035077
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. The Structure-Based Design of SARS-CoV-2 nsp14 Methyltransferase Ligands Yields Nanomolar Inhibitors.
    Otava T, Šála M, Li F, Fanfrlík J, Devkota K, Perveen S, Chau I, Pakarian P, Hobza P, Vedadi M, Boura E, Nencka R.
    ACS Infect Dis; 2021 Aug 13; 7(8):2214-2220. PubMed ID: 34152728
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Synthesis of adenine dinucleosides SAM analogs as specific inhibitors of SARS-CoV nsp14 RNA cap guanine-N7-methyltransferase.
    Ahmed-Belkacem R, Sutto-Ortiz P, Guiraud M, Canard B, Vasseur JJ, Decroly E, Debart F.
    Eur J Med Chem; 2020 Sep 01; 201():112557. PubMed ID: 32563813
    [Abstract] [Full Text] [Related]

  • 36. Structural basis of mismatch recognition by a SARS-CoV-2 proofreading enzyme.
    Liu C, Shi W, Becker ST, Schatz DG, Liu B, Yang Y.
    Science; 2021 Sep 03; 373(6559):1142-1146. PubMed ID: 34315827
    [Abstract] [Full Text] [Related]

  • 37. Coronavirus nsp10/nsp16 Methyltransferase Can Be Targeted by nsp10-Derived Peptide In Vitro and In Vivo To Reduce Replication and Pathogenesis.
    Wang Y, Sun Y, Wu A, Xu S, Pan R, Zeng C, Jin X, Ge X, Shi Z, Ahola T, Chen Y, Guo D.
    J Virol; 2015 Aug 03; 89(16):8416-27. PubMed ID: 26041293
    [Abstract] [Full Text] [Related]

  • 38. High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants.
    Eckerle LD, Lu X, Sperry SM, Choi L, Denison MR.
    J Virol; 2007 Nov 03; 81(22):12135-44. PubMed ID: 17804504
    [Abstract] [Full Text] [Related]

  • 39. Proteolytic Processing of the Coronavirus Replicase Nonstructural Protein 14 Exonuclease Is Not Required for Virus Replication but Alters RNA Synthesis and Viral Fitness.
    Anderson-Daniels J, Gribble J, Denison M.
    J Virol; 2022 Aug 24; 96(16):e0084122. PubMed ID: 35924922
    [Abstract] [Full Text] [Related]

  • 40. Proofreading-Deficient Coronaviruses Adapt for Increased Fitness over Long-Term Passage without Reversion of Exoribonuclease-Inactivating Mutations.
    Graepel KW, Lu X, Case JB, Sexton NR, Smith EC, Denison MR.
    mBio; 2017 Nov 07; 8(6):. PubMed ID: 29114026
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 33.