These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


872 related items for PubMed ID: 26163441

  • 1. Reconstructing historical changes in phosphorus inputs to rivers from point and nonpoint sources in a rapidly developing watershed in eastern China, 1980-2010.
    Chen D, Hu M, Guo Y, Dahlgren RA.
    Sci Total Environ; 2015 Nov 15; 533():196-204. PubMed ID: 26163441
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Seasonal variations of nitrogen and phosphorus retention in an agricultural drainage river in East China.
    Chen D, Lu J, Wang H, Shen Y, Kimberley MO.
    Environ Sci Pollut Res Int; 2010 Feb 15; 17(2):312-20. PubMed ID: 19795144
    [Abstract] [Full Text] [Related]

  • 4. Sewage-effluent phosphorus: a greater risk to river eutrophication than agricultural phosphorus?
    Jarvie HP, Neal C, Withers PJ.
    Sci Total Environ; 2006 May 01; 360(1-3):246-53. PubMed ID: 16226299
    [Abstract] [Full Text] [Related]

  • 5. Quantifying groundwater phosphorus flux to rivers in a typical agricultural watershed in eastern China.
    Pan Z, Hu M, Shen H, Wu H, Zhou J, Wu K, Chen D.
    Environ Sci Pollut Res Int; 2023 Feb 01; 30(8):19873-19889. PubMed ID: 36242662
    [Abstract] [Full Text] [Related]

  • 6. Modelling of phosphorus inputs to rivers from diffuse and point sources.
    Bowes MJ, Smith JT, Jarvie HP, Neal C.
    Sci Total Environ; 2008 Jun 01; 395(2-3):125-38. PubMed ID: 18367235
    [Abstract] [Full Text] [Related]

  • 7. An evaluation of catchment-scale phosphorus mitigation using load apportionment modelling.
    Greene S, Taylor D, McElarney YR, Foy RH, Jordan P.
    Sci Total Environ; 2011 May 01; 409(11):2211-21. PubMed ID: 21429559
    [Abstract] [Full Text] [Related]

  • 8. The relative contribution of sewage and diffuse phosphorus sources in the River Avon catchment, southern England: implications for nutrient management.
    Bowes MJ, Hilton J, Irons GP, Hornby DD.
    Sci Total Environ; 2005 May 15; 344(1-3):67-81. PubMed ID: 15907511
    [Abstract] [Full Text] [Related]

  • 9. Predicting phosphorus concentrations in British rivers resulting from the introduction of improved phosphorus removal from sewage effluent.
    Bowes MJ, Neal C, Jarvie HP, Smith JT, Davies HN.
    Sci Total Environ; 2010 Sep 01; 408(19):4239-50. PubMed ID: 20547413
    [Abstract] [Full Text] [Related]

  • 10. Load estimation and source apportionment of nonpoint source nitrogen and phosphorus based on integrated application of SLURP model, ECM, and RUSLE: a case study in the Jinjiang River, China.
    Chen H, Teng Y, Wang J.
    Environ Monit Assess; 2013 Feb 01; 185(2):2009-21. PubMed ID: 22644124
    [Abstract] [Full Text] [Related]

  • 11. Simulation of spatial and temporal distributions of non-point source pollution load in the Three Gorges Reservoir Region.
    Shen Z, Qiu J, Hong Q, Chen L.
    Sci Total Environ; 2014 Sep 15; 493():138-46. PubMed ID: 24946028
    [Abstract] [Full Text] [Related]

  • 12. Impact of changes in nutrient inputs to the water quality of the shallow Haapsalu Bay, the Baltic Sea.
    Iital A, Brandt N, Gröndahl F, Loigu E, Klõga M.
    J Environ Monit; 2010 Aug 05; 12(8):1531-6. PubMed ID: 20577689
    [Abstract] [Full Text] [Related]

  • 13. A Bayesian modeling approach for phosphorus load apportionment in a reservoir with high water transfer disturbance.
    Liu X, Wang Y, Feng J, Chu C, Qiu Y, Xu Z, Li Z, Wang Y.
    Environ Sci Pollut Res Int; 2018 Nov 05; 25(32):32395-32408. PubMed ID: 30229496
    [Abstract] [Full Text] [Related]

  • 14. Spatio-temporal variations of nitrogen in an agricultural watershed in eastern China: catchment export, stream attenuation and discharge.
    Chen D, Lu J, Shen Y, Gong D, Deng O.
    Environ Pollut; 2011 Oct 05; 159(10):2989-95. PubMed ID: 21555173
    [Abstract] [Full Text] [Related]

  • 15. Long-term (1980-2015) changes in net anthropogenic phosphorus inputs and riverine phosphorus export in the Yangtze River basin.
    Hu M, Liu Y, Zhang Y, Shen H, Yao M, Dahlgren RA, Chen D.
    Water Res; 2020 Jun 15; 177():115779. PubMed ID: 32294592
    [Abstract] [Full Text] [Related]

  • 16. The MARINA model (Model to Assess River Inputs of Nutrients to seAs): Model description and results for China.
    Strokal M, Kroeze C, Wang M, Bai Z, Ma L.
    Sci Total Environ; 2016 Aug 15; 562():869-888. PubMed ID: 27115624
    [Abstract] [Full Text] [Related]

  • 17. Within-river phosphorus retention: accounting for a missing piece in the watershed phosphorus puzzle.
    Jarvie HP, Sharpley AN, Scott JT, Haggard BE, Bowes MJ, Massey LB.
    Environ Sci Technol; 2012 Dec 18; 46(24):13284-92. PubMed ID: 23106359
    [Abstract] [Full Text] [Related]

  • 18. Application of modified export coefficient method on the load estimation of non-point source nitrogen and phosphorus pollution of soil and water loss in semiarid regions.
    Wu L, Gao JE, Ma XY, Li D.
    Environ Sci Pollut Res Int; 2015 Jul 18; 22(14):10647-60. PubMed ID: 25752629
    [Abstract] [Full Text] [Related]

  • 19. Assessment and analysis of non-point source nitrogen and phosphorus loads in the Three Gorges Reservoir Area of Hubei Province, China.
    Ma X, Li Y, Zhang M, Zheng F, Du S.
    Sci Total Environ; 2011 Dec 15; 412-413():154-61. PubMed ID: 22078328
    [Abstract] [Full Text] [Related]

  • 20. Nutrient load estimation in nonpoint source pollution of Hong Kong region.
    Li HE, Lee JH, Koenig A, Jayawardena AW.
    Water Sci Technol; 2005 Dec 15; 51(3-4):209-16. PubMed ID: 15850192
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 44.