These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Reprogramming of fatty acid and oxylipin synthesis in rhizobacteria-induced systemic resistance in tomato. Mariutto M, Fauconnier ML, Ongena M, Laloux M, Wathelet JP, du Jardin P, Thonart P, Dommes J. Plant Mol Biol; 2014 Mar; 84(4-5):455-67. PubMed ID: 24146221 [Abstract] [Full Text] [Related]
43. Mycorrhizal fungi and Trichoderma harzianum as biocontrol agents for suppression of Rhizoctonia solani damping-off disease of tomato. Amer MA, Abou-El-Seoud II. Commun Agric Appl Biol Sci; 2008 Mar; 73(2):217-32. PubMed ID: 19226759 [Abstract] [Full Text] [Related]
44. Silencing of DND1 in potato and tomato impedes conidial germination, attachment and hyphal growth of Botrytis cinerea. Sun K, van Tuinen A, van Kan JAL, Wolters AA, Jacobsen E, Visser RGF, Bai Y. BMC Plant Biol; 2017 Dec 06; 17(1):235. PubMed ID: 29212470 [Abstract] [Full Text] [Related]
46. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways. Zhang Y, Li D, Zhang H, Hong Y, Huang L, Liu S, Li X, Ouyang Z, Song F. BMC Plant Biol; 2015 Oct 21; 15():252. PubMed ID: 26490733 [Abstract] [Full Text] [Related]
49. Hexanoic acid protects tomato plants against Botrytis cinerea by priming defence responses and reducing oxidative stress. Finiti I, de la O Leyva M, Vicedo B, Gómez-Pastor R, López-Cruz J, García-Agustín P, Real MD, González-Bosch C. Mol Plant Pathol; 2014 Aug 21; 15(6):550-62. PubMed ID: 24320938 [Abstract] [Full Text] [Related]
51. The Protective Effect of Trichoderma asperellum on Tomato Plants against Fusariumoxysporum and Botrytis cinerea Diseases Involves Inhibition of Reactive Oxygen Species Production. Herrera-Téllez VI, Cruz-Olmedo AK, Plasencia J, Gavilanes-Ruíz M, Arce-Cervantes O, Hernández-León S, Saucedo-García M. Int J Mol Sci; 2019 Apr 24; 20(8):. PubMed ID: 31022849 [Abstract] [Full Text] [Related]
57. Transcriptome analysis and functional validation reveal a novel gene, BcCGF1, that enhances fungal virulence by promoting infection-related development and host penetration. Zhang MZ, Sun CH, Liu Y, Feng HQ, Chang HW, Cao SN, Li GH, Yang S, Hou J, Zhu-Salzman K, Zhang H, Qin QM. Mol Plant Pathol; 2020 Jun 24; 21(6):834-853. PubMed ID: 32301267 [Abstract] [Full Text] [Related]
58. Identifying beneficial qualities of Trichoderma parareesei for plants. Rubio MB, Quijada NM, Pérez E, Domínguez S, Monte E, Hermosa R. Appl Environ Microbiol; 2014 Mar 24; 80(6):1864-73. PubMed ID: 24413597 [Abstract] [Full Text] [Related]
59. Sm2, a paralog of the Trichoderma cerato-platanin elicitor Sm1, is also highly important for plant protection conferred by the fungal-root interaction of Trichoderma with maize. Gaderer R, Lamdan NL, Frischmann A, Sulyok M, Krska R, Horwitz BA, Seidl-Seiboth V. BMC Microbiol; 2015 Jan 16; 15(1):2. PubMed ID: 25591782 [Abstract] [Full Text] [Related]
60. Partial silencing of a hydroxy-methylglutaryl-CoA reductase-encoding gene in Trichoderma harzianum CECT 2413 results in a lower level of resistance to lovastatin and lower antifungal activity. Cardoza RE, Hermosa MR, Vizcaíno JA, González F, Llobell A, Monte E, Gutiérrez S. Fungal Genet Biol; 2007 Apr 16; 44(4):269-83. PubMed ID: 17218128 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]