These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
167 related items for PubMed ID: 26182074
1. Nanoemulsion Therapy for Burn Wounds Is Effective as a Topical Antimicrobial Against Gram-Negative and Gram-Positive Bacteria. Dolgachev VA, Ciotti SM, Eisma R, Gracon S, Wilkinson JE, Baker JR, Hemmila MR. J Burn Care Res; 2016; 37(2):e104-14. PubMed ID: 26182074 [Abstract] [Full Text] [Related]
2. Screening of Nanoemulsion Formulations and Identification of NB-201 as an Effective Topical Antimicrobial for Staphylococcus aureus in a Mouse Model of Infected Wounds. Fan Y, Ciotti S, Cao Z, Eisma R, Baker J, Wang SH. Mil Med; 2016 May; 181(5 Suppl):259-64. PubMed ID: 27168582 [Abstract] [Full Text] [Related]
3. Topical nanoemulsion therapy reduces bacterial wound infection and inflammation after burn injury. Hemmila MR, Mattar A, Taddonio MA, Arbabi S, Hamouda T, Ward PA, Wang SC, Baker JR. Surgery; 2010 Sep; 148(3):499-509. PubMed ID: 20189619 [Abstract] [Full Text] [Related]
4. Nanoemulsion is an effective antimicrobial for methicillin-resistant Staphylococcus aureus in infected wounds. Cao Z, Spilker T, Fan Y, Kalikin LM, Ciotti S, LiPuma JJ, Makidon PE, Wilkinson JE, Baker JR, Wang SH. Nanomedicine (Lond); 2017 May; 12(10):1177-1185. PubMed ID: 28447896 [Abstract] [Full Text] [Related]
5. Full-thickness porcine burns infected with Staphylococcus aureus or Pseudomonas aeruginosa can be effectively treated with topical antibiotics. Tsai DM, Tracy LE, Lee CC, Hackl F, Kiwanuka E, Minasian RA, Onderdonk A, Junker JP, Eriksson E, Caterson EJ. Wound Repair Regen; 2016 Mar; 24(2):356-65. PubMed ID: 26800421 [Abstract] [Full Text] [Related]
6. Dermal Nanoemulsion Treatment Reduces Burn Wound Conversion and Improves Skin Healing in a Porcine Model of Thermal Burn Injury. Dolgachev VA, Ciotti S, Liechty E, Levi B, Wang SC, Baker JR, Hemmila MR. J Burn Care Res; 2021 Nov 24; 42(6):1232-1242. PubMed ID: 34145458 [Abstract] [Full Text] [Related]
7. Topical p38 MAPK inhibition reduces bacterial growth in an in vivo burn wound model. Ipaktchi K, Mattar A, Niederbichler AD, Hoesel LM, Vollmannshauser S, Hemmila MR, Minter RM, Su GL, Wang SC, Arbabi S. Surgery; 2007 Jul 24; 142(1):86-93. PubMed ID: 17630004 [Abstract] [Full Text] [Related]
8. Histopathological comparisons of Staphylococcus aureus and Pseudomonas aeruginosa experimental infected porcine burn wounds. Chaney SB, Ganesh K, Mathew-Steiner S, Stromberg P, Roy S, Sen CK, Wozniak DJ. Wound Repair Regen; 2017 May 24; 25(3):541-549. PubMed ID: 28466497 [Abstract] [Full Text] [Related]
9. Nanophyto-gel against multi-drug resistant Pseudomonas aeruginosa burn wound infection. Wen MM, Abdelwahab IA, Aly RG, El-Zahaby SA. Drug Deliv; 2021 Dec 24; 28(1):463-477. PubMed ID: 33620004 [Abstract] [Full Text] [Related]
11. A Murine Model of Full-Thickness Scald Burn Injury with Subsequent Wound and Systemic Bacterial Infection. Hernandez A, Patil NK, Bohannon JK. Methods Mol Biol; 2021 Dec 24; 2321():111-120. PubMed ID: 34048011 [Abstract] [Full Text] [Related]
12. Formation of Pseudomonas aeruginosa Biofilms in Full-thickness Scald Burn Wounds in Rats. Brandenburg KS, Weaver AJ, Karna SLR, You T, Chen P, Stryk SV, Qian L, Pineda U, Abercrombie JJ, Leung KP. Sci Rep; 2019 Sep 20; 9(1):13627. PubMed ID: 31541159 [Abstract] [Full Text] [Related]
13. Development of an Experimental Ex Vivo Wound Model to Evaluate Antimicrobial Efficacy of Topical Formulations. Andersson MÅ, Madsen LB, Schmidtchen A, Puthia M. Int J Mol Sci; 2021 May 10; 22(9):. PubMed ID: 34068733 [Abstract] [Full Text] [Related]
14. Immediate Treatment of Burn Wounds with High Concentrations of Topical Antibiotics in an Alginate Hydrogel Using a Platform Wound Device. Nuutila K, Grolman J, Yang L, Broomhead M, Lipsitz S, Onderdonk A, Mooney D, Eriksson E. Adv Wound Care (New Rochelle); 2020 Feb 01; 9(2):48-60. PubMed ID: 31903298 [Abstract] [Full Text] [Related]
15. Next science wound gel technology, a novel agent that inhibits biofilm development by gram-positive and gram-negative wound pathogens. Miller KG, Tran PL, Haley CL, Kruzek C, Colmer-Hamood JA, Myntti M, Hamood AN. Antimicrob Agents Chemother; 2014 Jun 01; 58(6):3060-72. PubMed ID: 24637684 [Abstract] [Full Text] [Related]
16. Frontline Science: Anti-PD-L1 protects against infection with common bacterial pathogens after burn injury. Patil NK, Luan L, Bohannon JK, Hernandez A, Guo Y, Sherwood ER. J Leukoc Biol; 2018 Jan 01; 103(1):23-33. PubMed ID: 29345058 [Abstract] [Full Text] [Related]
17. The impact of simultaneous inoculation of Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans on rodent burn wounds. Brandenburg KS, Weaver AJ, Karna SLR, Leung KP. Burns; 2021 Dec 01; 47(8):1818-1832. PubMed ID: 33771422 [Abstract] [Full Text] [Related]
18. [Reproduction of a rat model of burn with infection]. Zhang DW, Gong ZY, Peng YZ. Zhonghua Shao Shang Za Zhi; 2011 Apr 01; 27(2):104-8. PubMed ID: 21651846 [Abstract] [Full Text] [Related]
19. Accelerated healing by topical administration of Salvia officinalis essential oil on Pseudomonas aeruginosa and Staphylococcus aureus infected wound model. Farahpour MR, Pirkhezr E, Ashrafian A, Sonboli A. Biomed Pharmacother; 2020 Aug 01; 128():110120. PubMed ID: 32460189 [Abstract] [Full Text] [Related]