These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
642 related items for PubMed ID: 26186747
1. Photoplethysmography-Based Heart Rate Monitoring in Physical Activities via Joint Sparse Spectrum Reconstruction. Zhang Z. IEEE Trans Biomed Eng; 2015 Aug; 62(8):1902-10. PubMed ID: 26186747 [Abstract] [Full Text] [Related]
2. A Novel Time-Varying Spectral Filtering Algorithm for Reconstruction of Motion Artifact Corrupted Heart Rate Signals During Intense Physical Activities Using a Wearable Photoplethysmogram Sensor. Salehizadeh SM, Dao D, Bolkhovsky J, Cho C, Mendelson Y, Chon KH. Sensors (Basel); 2015 Dec 23; 16(1):. PubMed ID: 26703618 [Abstract] [Full Text] [Related]
3. TROIKA: a general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise. Zhang Z, Pi Z, Liu B. IEEE Trans Biomed Eng; 2015 Feb 23; 62(2):522-31. PubMed ID: 25252274 [Abstract] [Full Text] [Related]
4. Heart Rate monitoring during physical exercise using wrist-type photoplethysmographic (PPG) signals. Ahmadi AK, Moradi P, Malihi M, Karimi S, Shamsollahi MB. Annu Int Conf IEEE Eng Med Biol Soc; 2015 Feb 23; 2015():6166-9. PubMed ID: 26737700 [Abstract] [Full Text] [Related]
5. Improved Heart Rate Tracking Using Multiple Wrist-type Photoplethysmography during Physical Activities. Zhu L, Du D. Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul 23; 2018():1-4. PubMed ID: 30440267 [Abstract] [Full Text] [Related]
6. A motion-tolerant approach for monitoring SpO2 and heart rate using photoplethysmography signal with dual frame length processing and multi-classifier fusion. Fan F, Yan Y, Tang Y, Zhang H. Comput Biol Med; 2017 Dec 01; 91():291-305. PubMed ID: 29102826 [Abstract] [Full Text] [Related]
7. Optimizing Estimates of Instantaneous Heart Rate from Pulse Wave Signals with the Synchrosqueezing Transform. Wu HT, Lewis GF, Davila MI, Daubechies I, Porges SW. Methods Inf Med; 2016 Oct 17; 55(5):463-472. PubMed ID: 27626806 [Abstract] [Full Text] [Related]
8. SPECMAR: fast heart rate estimation from PPG signal using a modified spectral subtraction scheme with composite motion artifacts reference generation. Islam MT, Ahmed ST, Shahnaz C, Fattah SA. Med Biol Eng Comput; 2019 Mar 17; 57(3):689-702. PubMed ID: 30349957 [Abstract] [Full Text] [Related]
9. Robust Heart Rate Monitoring for Quasi-Periodic Motions by Wrist-Type PPG Signals. He W, Ye Y, Lu L, Cheng Y, Li Y, Wang Z. IEEE J Biomed Health Inform; 2020 Mar 17; 24(3):636-648. PubMed ID: 31021779 [Abstract] [Full Text] [Related]
10. Respiratory rate monitoring from the photoplethysmogram via sparse signal reconstruction. Zhang X, Ding Q. Physiol Meas; 2016 Jul 17; 37(7):1105-19. PubMed ID: 27319303 [Abstract] [Full Text] [Related]
11. Contactless and continuous monitoring of heart rate based on photoplethysmography on a mattress. Wong MY, Pickwell-MacPherson E, Zhang YT. Physiol Meas; 2010 Jul 17; 31(7):1065-74. PubMed ID: 20585149 [Abstract] [Full Text] [Related]
12. Reference signal less Fourier analysis based motion artifact removal algorithm for wearable photoplethysmography devices to estimate heart rate during physical exercises. Pankaj, Kumar A, Komaragiri R, Kumar M. Comput Biol Med; 2022 Feb 17; 141():105081. PubMed ID: 34952340 [Abstract] [Full Text] [Related]
13. Towards Photoplethysmography-Based Estimation of Instantaneous Heart Rate During Physical Activity. Jarchi D, Casson AJ. IEEE Trans Biomed Eng; 2017 Sep 17; 64(9):2042-2053. PubMed ID: 28212075 [Abstract] [Full Text] [Related]
15. A Robust Heart Rate Monitoring Scheme Using Photoplethysmographic Signals Corrupted by Intense Motion Artifacts. Khan E, Al Hossain F, Uddin SZ, Alam SK, Hasan MK. IEEE Trans Biomed Eng; 2016 Mar 17; 63(3):550-62. PubMed ID: 26276979 [Abstract] [Full Text] [Related]
16. A Robust Motion Artifact Detection Algorithm for Accurate Detection of Heart Rates From Photoplethysmographic Signals Using Time-Frequency Spectral Features. Dao D, Salehizadeh SMA, Noh Y, Chong JW, Cho CH, McManus D, Darling CE, Mendelson Y, Chon KH. IEEE J Biomed Health Inform; 2017 Sep 17; 21(5):1242-1253. PubMed ID: 28113791 [Abstract] [Full Text] [Related]
17. PARHELIA: Particle Filter-Based Heart Rate Estimation From Photoplethysmographic Signals During Physical Exercise. Fujita Y, Hiromoto M, Sato T. IEEE Trans Biomed Eng; 2018 Jan 17; 65(1):189-198. PubMed ID: 28459679 [Abstract] [Full Text] [Related]
18. SVM-Based Spectral Analysis for Heart Rate from Multi-Channel WPPG Sensor Signals. Xiong J, Cai L, Wang F, He X. Sensors (Basel); 2017 Mar 03; 17(3):. PubMed ID: 28273818 [Abstract] [Full Text] [Related]
19. Removal of Motion Artifacts in Photoplethysmograph Sensors during Intensive Exercise for Accurate Heart Rate Calculation Based on Frequency Estimation and Notch Filtering. Wang M, Li Z, Zhang Q, Wang G. Sensors (Basel); 2019 Jul 28; 19(15):. PubMed ID: 31357674 [Abstract] [Full Text] [Related]
20. Accurate Heart Rate Monitoring During Physical Exercises Using PPG. Temko A. IEEE Trans Biomed Eng; 2017 Sep 28; 64(9):2016-2024. PubMed ID: 28278454 [Abstract] [Full Text] [Related] Page: [Next] [New Search]