These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
200 related items for PubMed ID: 26187191
1. Bio-mimetic composite scaffold from mussel shells, squid pen and crab chitosan for bone tissue engineering. Shavandi A, Bekhit Ael-D, Ali MA, Sun Z. Int J Biol Macromol; 2015 Sep; 80():445-54. PubMed ID: 26187191 [Abstract] [Full Text] [Related]
2. Bio-scaffolds produced from irradiated squid pen and crab chitosan with hydroxyapatite/β-tricalcium phosphate for bone-tissue engineering. Shavandi A, Bekhit AE, Sun Z, Ali MA. Int J Biol Macromol; 2016 Dec; 93(Pt B):1446-1456. PubMed ID: 27126171 [Abstract] [Full Text] [Related]
3. A novel squid pen chitosan/hydroxyapatite/β-tricalcium phosphate composite for bone tissue engineering. Shavandi A, Bekhit Ael-D, Sun Z, Ali A, Gould M. Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():373-83. PubMed ID: 26117768 [Abstract] [Full Text] [Related]
4. Development and characterization of hydroxyapatite/β-TCP/chitosan composites for tissue engineering applications. Shavandi A, Bekhit Ael-D, Ali MA, Sun Z, Gould M. Mater Sci Eng C Mater Biol Appl; 2015 Nov 01; 56():481-93. PubMed ID: 26249618 [Abstract] [Full Text] [Related]
5. Preparation and biological properties of PLLA/beta-TCP composites reinforced by chitosan fibers. Wang J, Qu L, Meng X, Gao J, Li H, Wen G. Biomed Mater; 2008 Jun 01; 3(2):025004. PubMed ID: 18458373 [Abstract] [Full Text] [Related]
6. Ultrasound-Assisted Extraction of Chitosan from Squid Pen: Molecular Characterization and Fat Binding Capacity. Singh A, Benjakul S, Prodpran T. J Food Sci; 2019 Feb 01; 84(2):224-234. PubMed ID: 30684268 [Abstract] [Full Text] [Related]
14. Porous scaffold hydroxyapatite from sand lobster shells (Panulirus homarus) using polyethylene oxide/chitosan as polymeric porogen for bone tissue engineering. Kadek Hariscandra Dinatha I, Jamilludin MA, Supii AI, Wihadmadyatami H, Partini J, Yusuf Y. J Biomed Mater Res B Appl Biomater; 2024 Jan 01; 112(1):e35341. PubMed ID: 37877433 [Abstract] [Full Text] [Related]
15. Reinforcement of freeze-dried chitosan scaffolds with multiphasic calcium phosphate short fibers. Mohammadi Z, Mesgar AS, Rasouli-Disfani F. J Mech Behav Biomed Mater; 2016 Aug 01; 61():590-599. PubMed ID: 27179144 [Abstract] [Full Text] [Related]
16. Biosilica incorporated 3D porous scaffolds for bone tissue engineering applications. Tamburaci S, Tihminlioglu F. Mater Sci Eng C Mater Biol Appl; 2018 Oct 01; 91():274-291. PubMed ID: 30033256 [Abstract] [Full Text] [Related]
17. Development of porous chitosan-gelatin/hydroxyapatite composite scaffolds for hard tissue-engineering applications. Isikli C, Hasirci V, Hasirci N. J Tissue Eng Regen Med; 2012 Feb 01; 6(2):135-43. PubMed ID: 21351375 [Abstract] [Full Text] [Related]
18. Microwave-assisted fabrication of chitosan-hydroxyapatite superporous hydrogel composites as bone scaffolds. Beşkardeş IG, Demirtaş TT, Durukan MD, Gümüşderelioğlu M. J Tissue Eng Regen Med; 2015 Nov 01; 9(11):1233-46. PubMed ID: 23239627 [Abstract] [Full Text] [Related]
19. Fabrication and characterization of gelatin-based biocompatible porous composite scaffold for bone tissue engineering. Khan MN, Islam JM, Khan MA. J Biomed Mater Res A; 2012 Nov 01; 100(11):3020-8. PubMed ID: 22707185 [Abstract] [Full Text] [Related]