These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
441 related items for PubMed ID: 26187921
1. Genetic Determinants of the Network of Primary Metabolism and Their Relationships to Plant Performance in a Maize Recombinant Inbred Line Population. Wen W, Li K, Alseekh S, Omranian N, Zhao L, Zhou Y, Xiao Y, Jin M, Yang N, Liu H, Florian A, Li W, Pan Q, Nikoloski Z, Yan J, Fernie AR. Plant Cell; 2015 Jul; 27(7):1839-56. PubMed ID: 26187921 [Abstract] [Full Text] [Related]
2. Combining Quantitative Genetics Approaches with Regulatory Network Analysis to Dissect the Complex Metabolism of the Maize Kernel. Wen W, Liu H, Zhou Y, Jin M, Yang N, Li D, Luo J, Xiao Y, Pan Q, Tohge T, Fernie AR, Yan J. Plant Physiol; 2016 Jan; 170(1):136-46. PubMed ID: 26556794 [Abstract] [Full Text] [Related]
3. Genetic analysis of agronomic traits associated with plant architecture by QTL mapping in maize. Zheng ZP, Liu XH. Genet Mol Res; 2013 Apr 17; 12(2):1243-53. PubMed ID: 23661449 [Abstract] [Full Text] [Related]
4. Genetic basis of maize kernel starch content revealed by high-density single nucleotide polymorphism markers in a recombinant inbred line population. Wang T, Wang M, Hu S, Xiao Y, Tong H, Pan Q, Xue J, Yan J, Li J, Yang X. BMC Plant Biol; 2015 Dec 12; 15():288. PubMed ID: 26654531 [Abstract] [Full Text] [Related]
5. The Genetic Basis of Plant Architecture in 10 Maize Recombinant Inbred Line Populations. Pan Q, Xu Y, Li K, Peng Y, Zhan W, Li W, Li L, Yan J. Plant Physiol; 2017 Oct 12; 175(2):858-873. PubMed ID: 28838954 [Abstract] [Full Text] [Related]
6. An integrated multi-layered analysis of the metabolic networks of different tissues uncovers key genetic components of primary metabolism in maize. Wen W, Jin M, Li K, Liu H, Xiao Y, Zhao M, Alseekh S, Li W, de Abreu E Lima F, Brotman Y, Willmitzer L, Fernie AR, Yan J. Plant J; 2018 Mar 12; 93(6):1116-1128. PubMed ID: 29381266 [Abstract] [Full Text] [Related]
8. The genetic architecture of maize flowering time. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li H, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Sanchez Villeda H, da Silva HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S, McMullen MD. Science; 2009 Aug 07; 325(5941):714-8. PubMed ID: 19661422 [Abstract] [Full Text] [Related]
9. QTL mapping of agronomic waterlogging tolerance using recombinant inbred lines derived from tropical maize (Zea mays L) germplasm. Zaidi PH, Rashid Z, Vinayan MT, Almeida GD, Phagna RK, Babu R. PLoS One; 2015 Aug 07; 10(4):e0124350. PubMed ID: 25884393 [Abstract] [Full Text] [Related]
10. Genome-wide dissection of the maize ear genetic architecture using multiple populations. Xiao Y, Tong H, Yang X, Xu S, Pan Q, Qiao F, Raihan MS, Luo Y, Liu H, Zhang X, Yang N, Wang X, Deng M, Jin M, Zhao L, Luo X, Zhou Y, Li X, Liu J, Zhan W, Liu N, Wang H, Chen G, Cai Y, Xu G, Wang W, Zheng D, Yan J. New Phytol; 2016 May 07; 210(3):1095-106. PubMed ID: 26715032 [Abstract] [Full Text] [Related]
11. Quantitative trait locus analysis for ear height in maize based on a recombinant inbred line population. Li ZQ, Zhang HM, Wu XP, Sun Y, Liu XH. Genet Mol Res; 2014 Jan 21; 13(1):450-6. PubMed ID: 24535872 [Abstract] [Full Text] [Related]
12. Dissection of the genetic architecture underlying the plant density response by mapping plant height-related traits in maize (Zea mays L.). Ku L, Zhang L, Tian Z, Guo S, Su H, Ren Z, Wang Z, Li G, Wang X, Zhu Y, Zhou J, Chen Y. Mol Genet Genomics; 2015 Aug 21; 290(4):1223-33. PubMed ID: 25566854 [Abstract] [Full Text] [Related]
13. Genetic architecture of rind penetrometer resistance in two maize recombinant inbred line populations. Li K, Yan J, Li J, Yang X. BMC Plant Biol; 2014 Jun 03; 14():152. PubMed ID: 24893717 [Abstract] [Full Text] [Related]
14. Genomic Dissection of Leaf Angle in Maize (Zea mays L.) Using a Four-Way Cross Mapping Population. Ding J, Zhang L, Chen J, Li X, Li Y, Cheng H, Huang R, Zhou B, Li Z, Wang J, Wu J. PLoS One; 2015 Jun 03; 10(10):e0141619. PubMed ID: 26509792 [Abstract] [Full Text] [Related]
15. Genomic basis underlying the metabolome-mediated drought adaptation of maize. Zhang F, Wu J, Sade N, Wu S, Egbaria A, Fernie AR, Yan J, Qin F, Chen W, Brotman Y, Dai M. Genome Biol; 2021 Sep 06; 22(1):260. PubMed ID: 34488839 [Abstract] [Full Text] [Related]
16. QTL identification of ear leaf morphometric traits under different nitrogen regimes in maize. Zheng ZP, Liu XH. Genet Mol Res; 2013 Feb 28; 12(4):4342-51. PubMed ID: 23479157 [Abstract] [Full Text] [Related]
17. Fine-mapping of qGW4.05, a major QTL for kernel weight and size in maize. Chen L, Li YX, Li C, Wu X, Qin W, Li X, Jiao F, Zhang X, Zhang D, Shi Y, Song Y, Li Y, Wang T. BMC Plant Biol; 2016 Apr 12; 16():81. PubMed ID: 27068015 [Abstract] [Full Text] [Related]
18. Comparative mapping of quantitative trait loci for tassel-related traits of maize in F2:3 and RIL populations. Yi Q, Liu Y, Zhang X, Hou X, Zhang J, Liu H, Hu Y, Yu G, Huang Y. J Genet; 2018 Mar 12; 97(1):253-266. PubMed ID: 29666344 [Abstract] [Full Text] [Related]
19. Mapping QTLs for opaque2 modifiers influencing the tryptophan content in quality protein maize using genomic and candidate gene-based SSRs of lysine and tryptophan metabolic pathway. Babu BK, Agrawal PK, Saha S, Gupta HS. Plant Cell Rep; 2015 Jan 12; 34(1):37-45. PubMed ID: 25236159 [Abstract] [Full Text] [Related]
20. [Construction of a SSR linkage map and mapping of quantitative trait loci (QTL) for leaf angle and leaf orientation with an elite maize hybrid]. Lu M, Zhou F, Xie CX, Li MS, Xu YB, Marilyn W, Zhang SH. Yi Chuan; 2007 Sep 12; 29(9):1131-8. PubMed ID: 17855265 [Abstract] [Full Text] [Related] Page: [Next] [New Search]