These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


403 related items for PubMed ID: 26189556

  • 21. Biomass changes and trophic amplification of plankton in a warmer ocean.
    Chust G, Allen JI, Bopp L, Schrum C, Holt J, Tsiaras K, Zavatarelli M, Chifflet M, Cannaby H, Dadou I, Daewel U, Wakelin SL, Machu E, Pushpadas D, Butenschon M, Artioli Y, Petihakis G, Smith C, Garçon V, Goubanova K, Le Vu B, Fach BA, Salihoglu B, Clementi E, Irigoien X.
    Glob Chang Biol; 2014 Jul; 20(7):2124-39. PubMed ID: 24604761
    [Abstract] [Full Text] [Related]

  • 22. Tree range expansion in eastern North America fails to keep pace with climate warming at northern range limits.
    Sittaro F, Paquette A, Messier C, Nock CA.
    Glob Chang Biol; 2017 Aug; 23(8):3292-3301. PubMed ID: 28165187
    [Abstract] [Full Text] [Related]

  • 23. Climate change and distribution shifts in marine fishes.
    Perry AL, Low PJ, Ellis JR, Reynolds JD.
    Science; 2005 Jun 24; 308(5730):1912-5. PubMed ID: 15890845
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Chapter 2. Vulnerability of marine turtles to climate change.
    Poloczanska ES, Limpus CJ, Hays GC.
    Adv Mar Biol; 2009 Jun 24; 56():151-211. PubMed ID: 19895975
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Modelling the effects of climate change on the distribution and production of marine fishes: accounting for trophic interactions in a dynamic bioclimate envelope model.
    Fernandes JA, Cheung WW, Jennings S, Butenschön M, de Mora L, Frölicher TL, Barange M, Grant A.
    Glob Chang Biol; 2013 Aug 24; 19(8):2596-607. PubMed ID: 23625663
    [Abstract] [Full Text] [Related]

  • 28. Climate-Driven Shifts in Marine Species Ranges: Scaling from Organisms to Communities.
    Pinsky ML, Selden RL, Kitchel ZJ.
    Ann Rev Mar Sci; 2020 Jan 03; 12():153-179. PubMed ID: 31505130
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Using fuzzy logic to determine the vulnerability of marine species to climate change.
    Jones MC, Cheung WWL.
    Glob Chang Biol; 2018 Feb 03; 24(2):e719-e731. PubMed ID: 28948655
    [Abstract] [Full Text] [Related]

  • 33. A Climate-Driven Functional Inversion of Connected Marine Ecosystems.
    McLean M, Mouillot D, Lindegren M, Engelhard G, Villéger S, Marchal P, Brind'Amour A, Auber A.
    Curr Biol; 2018 Nov 19; 28(22):3654-3660.e3. PubMed ID: 30416056
    [Abstract] [Full Text] [Related]

  • 34. Widespread omnivory and low temporal and spatial variation in the diet of fishes in a hydrologically variable northern Australian river.
    Pusey BJ, Arthington AH, Stewart-Koster B, Kennard MJ, Read MG.
    J Fish Biol; 2010 Aug 19; 77(3):731-53. PubMed ID: 20701651
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Thermal biases and vulnerability to warming in the world's marine fauna.
    Stuart-Smith RD, Edgar GJ, Barrett NS, Kininmonth SJ, Bates AE.
    Nature; 2015 Dec 03; 528(7580):88-92. PubMed ID: 26560025
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 21.