These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


165 related items for PubMed ID: 26190672

  • 1. Molecular recognition between adenine or 2,6-diaminopurine and copper(II) chelates with N,O2,S-tripodal tetradentate chelators having thioether or disulfide donor groups.
    González-Pérez JM, Choquesillo-Lazarte D, Domínguez-Martín A, El Bakkali H, García-Rubiño ME, Pérez-Toro I, Vílchez-Rodríguez E, Castiñeiras A, Nurchi VM, Niclós-Gutiérrez J.
    J Inorg Biochem; 2015 Oct; 151():75-86. PubMed ID: 26190672
    [Abstract] [Full Text] [Related]

  • 2. Molecular recognition modes between adenine or adeniniun(1+) ion and binary M(II)(pdc) chelates (MCoZn; pdc=pyridine-2,6-dicarboxylate(2-) ion).
    Del Pilar Brandi-Blanco M, Choquesillo-Lazarte D, Domínguez-Martín A, Matilla-Hernández A, González-Pérez JM, Castiñeiras A, Niclós-Gutiérrez J.
    J Inorg Biochem; 2013 Oct; 127():211-9. PubMed ID: 23838362
    [Abstract] [Full Text] [Related]

  • 3. Structural insights on the molecular recognition patterns between N(6)-substituted adenines and N-(aryl-methyl)iminodiacetate copper(II) chelates.
    Domínguez-Martín A, García-Raso A, Cabot C, Choquesillo-Lazarte D, Pérez-Toro I, Matilla-Hernández A, Castiñeiras A, Niclós-Gutiérrez J.
    J Inorg Biochem; 2013 Oct; 127():141-9. PubMed ID: 23490423
    [Abstract] [Full Text] [Related]

  • 4. H(N3)dap (Hdap = 2,6-Diaminopurine) Recognition by Cu2(EGTA): Structure, Physical Properties, and Density Functional Theory Calculations of [Cu4(μ-EGTA)2(μ-H(N3)dap)2(H2O)2]·7H2O.
    Mousavi H, García-Rubiño ME, Choquesillo-Lazarte D, Castiñeiras A, Lezama L, Frontera A, Niclós-Gutiérrez J.
    Molecules; 2023 Aug 26; 28(17):. PubMed ID: 37687091
    [Abstract] [Full Text] [Related]

  • 5. Copper(I) complex O(2)-reactivity with a N(3)S thioether ligand: a copper-dioxygen adduct including sulfur ligation, ligand oxygenation, and comparisons with all nitrogen ligand analogues.
    Lee DH, Hatcher LQ, Vance MA, Sarangi R, Milligan AE, Sarjeant AA, Incarvito CD, Rheingold AL, Hodgson KO, Hedman B, Solomon EI, Karlin KD.
    Inorg Chem; 2007 Jul 23; 46(15):6056-68. PubMed ID: 17580938
    [Abstract] [Full Text] [Related]

  • 6. Lights and shadows in the challenge of binding acyclovir, a synthetic purine-like nucleoside with antiviral activity, at an apical-distal coordination site in copper(II)-polyamine chelates.
    Pérez-Toro I, Domínguez-Martín A, Choquesillo-Lazarte D, Vílchez-Rodríguez E, González-Pérez JM, Castiñeiras A, Niclós-Gutiérrez J.
    J Inorg Biochem; 2015 Jul 23; 148():84-92. PubMed ID: 25863571
    [Abstract] [Full Text] [Related]

  • 7. Molecular recognition patterns of 2-aminopurine versus adenine: a view through ternary copper(II) complexes.
    Domínguez-Martín A, Choquesillo-Lazarte D, González-Pérez JM, Castiñeiras A, Niclós-Gutiérrez J.
    J Inorg Biochem; 2011 Aug 23; 105(8):1073-80. PubMed ID: 21726770
    [Abstract] [Full Text] [Related]

  • 8. Extent of intramolecular π-stacks in aqueous solution in mixed-ligand copper(II) complexes formed by heteroaromatic amines and several 2-aminopurine derivatives of the antivirally active nucleotide analog 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA).
    Gómez-Coca RB, Blindauer CA, Sigel A, Operschall BP, Holý A, Sigel H.
    Chem Biodivers; 2012 Sep 23; 9(9):2008-34. PubMed ID: 22976988
    [Abstract] [Full Text] [Related]

  • 9. Interligand interactions controlling the mu-N7,N9-metal bonding of adenine (AdeH) to the N-benzyliminodiacetato(2-) copper(II) chelate and promoting the N9 versus N3 tautomeric proton transfer: molecular and crystal structure of [Cu2(NBzIDA)(2)(H2O)(2)(mu-N7,N9-Ade(N3)H)].(3)H2O.
    Rojas-González PX, Castiñeiras A, González-Pérez JM, Choquesillo-Lazarte D, Niclós-Gutiérrez J.
    Inorg Chem; 2002 Dec 02; 41(24):6190-2. PubMed ID: 12444757
    [Abstract] [Full Text] [Related]

  • 10. Dinuclear copper(II) complexes with {Cu2(mu-hydroxo)bis(mu-carboxylato)}+ cores and their reactions with sugar phosphate esters: A substrate binding model of fructose-1,6-bisphosphatase.
    Kato M, Tanase T, Mikuriya M.
    Inorg Chem; 2006 Apr 03; 45(7):2925-41. PubMed ID: 16562948
    [Abstract] [Full Text] [Related]

  • 11. Intramolecular stacking interactions in ternary copper(II) complexes formed by a heteroaromatic amine and 9-[2-(2-phosphonoethoxy)ethyl]adenine, a relative of the antiviral nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]adenine.
    Fernández-Botello A, Holý A, Moreno V, Sigel H.
    J Inorg Biochem; 2004 Dec 03; 98(12):2114-24. PubMed ID: 15541501
    [Abstract] [Full Text] [Related]

  • 12. Sulfur donor atom effects on copper(I)/O(2) chemistry with thioanisole containing tetradentate N(3)S ligand leading to μ-1,2-peroxo-dicopper(II) species.
    Lee Y, Lee DH, Park GY, Lucas HR, Narducci Sarjeant AA, Kieber-Emmons MT, Vance MA, Milligan AE, Solomon EI, Karlin KD.
    Inorg Chem; 2010 Oct 04; 49(19):8873-85. PubMed ID: 20822156
    [Abstract] [Full Text] [Related]

  • 13. Thiol-copper(I) and disulfide-dicopper(I) complex O2-reactivity leading to sulfonate-copper(II) complex or the formation of a cross-linked thioether-phenol product with phenol addition.
    Lee Y, Lee DH, Sarjeant AA, Karlin KD.
    J Inorg Biochem; 2007 Nov 04; 101(11-12):1845-58. PubMed ID: 17651805
    [Abstract] [Full Text] [Related]

  • 14. Tuning of the copper-thioether bond in tetradentate N₃S(thioether) ligands; O-O bond reductive cleavage via a [Cu(II)₂(μ-1,2-peroxo)]²⁺/[Cu(III)₂(μ-oxo)₂]²⁺ equilibrium.
    Kim S, Ginsbach JW, Billah AI, Siegler MA, Moore CD, Solomon EI, Karlin KD.
    J Am Chem Soc; 2014 Jun 04; 136(22):8063-71. PubMed ID: 24854766
    [Abstract] [Full Text] [Related]

  • 15. Synthesis, X-ray crystal structures and biomimetic and anticancer activities of novel copper(II)benzoate complexes incorporating 2-(4'-thiazolyl)benzimidazole (thiabendazole), 2-(2-pyridyl)benzimidazole and 1,10-phenanthroline as chelating nitrogen donor ligands.
    Devereux M, O Shea D, Kellett A, McCann M, Walsh M, Egan D, Deegan C, Kedziora K, Rosair G, Müller-Bunz H.
    J Inorg Biochem; 2007 Jun 04; 101(6):881-92. PubMed ID: 17397929
    [Abstract] [Full Text] [Related]

  • 16. Coordination diversity in mono- and oligonuclear copper(II) complexes of pyridine-2-hydroxamic and pyridine-2,6-dihydroxamic acids.
    Gumienna-Kontecka E, Golenya IA, Szebesczyk A, Haukka M, Krämer R, Fritsky IO.
    Inorg Chem; 2013 Jul 01; 52(13):7633-44. PubMed ID: 23777395
    [Abstract] [Full Text] [Related]

  • 17. Structural consequences of the N7 and C8 translocation on the metal binding behavior of adenine.
    Domínguez-Martín A, Choquesillo-Lazarte D, Dobado JA, Martínez-García H, Lezama L, González-Pérez JM, Castiñeiras A, Niclós-Gutiérrez J.
    Inorg Chem; 2013 Feb 18; 52(4):1916-25. PubMed ID: 23356582
    [Abstract] [Full Text] [Related]

  • 18. Tripodal bis(imidazole) thioether copper(I) complexes: mimics of the Cu(M) site of copper hydroxylase enzymes.
    Zhou L, Powell D, Nicholas KM.
    Inorg Chem; 2007 Sep 17; 46(19):7789-99. PubMed ID: 17713902
    [Abstract] [Full Text] [Related]

  • 19. Reactions of Pd(II) with chelate-tethered 2,6-diaminopurine derivatives: N3-coordination and reaction of the purine system.
    Galindo MA, Amantia D, Martinez-Martinez A, Clegg W, Harrington RW, Moreno Martinez V, Houlton A.
    Inorg Chem; 2009 Dec 07; 48(23):11085-91. PubMed ID: 19856895
    [Abstract] [Full Text] [Related]

  • 20. Dioxygen reactivity of a copper(I) complex with a N3S thioether chelate; peroxo-dicopper(II) formation including sulfur-ligation.
    Hatcher LQ, Lee DH, Vance MA, Milligan AE, Sarangi R, Hodgson KO, Hedman B, Solomon EI, Karlin KD.
    Inorg Chem; 2006 Dec 11; 45(25):10055-7. PubMed ID: 17140210
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.