These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


480 related items for PubMed ID: 26198574

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. MicroRNAs are dynamically regulated in hypertrophic hearts, and miR-199a is essential for the maintenance of cell size in cardiomyocytes.
    Song XW, Li Q, Lin L, Wang XC, Li DF, Wang GK, Ren AJ, Wang YR, Qin YW, Yuan WJ, Jing Q.
    J Cell Physiol; 2010 Nov; 225(2):437-43. PubMed ID: 20458739
    [Abstract] [Full Text] [Related]

  • 23. In vivo activation of a conserved microRNA program induces mammalian heart regeneration.
    Aguirre A, Montserrat N, Zacchigna S, Nivet E, Hishida T, Krause MN, Kurian L, Ocampo A, Vazquez-Ferrer E, Rodriguez-Esteban C, Kumar S, Moresco JJ, Yates JR, Campistol JM, Sancho-Martinez I, Giacca M, Izpisua Belmonte JC.
    Cell Stem Cell; 2014 Nov 06; 15(5):589-604. PubMed ID: 25517466
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. A novel cardiomyocyte-enriched microRNA, miR-378, targets insulin-like growth factor 1 receptor: implications in postnatal cardiac remodeling and cell survival.
    Knezevic I, Patel A, Sundaresan NR, Gupta MP, Solaro RJ, Nagalingam RS, Gupta M.
    J Biol Chem; 2012 Apr 13; 287(16):12913-26. PubMed ID: 22367207
    [Abstract] [Full Text] [Related]

  • 27. Endocrine and other physiologic modulators of perinatal cardiomyocyte endowment.
    Jonker SS, Louey S.
    J Endocrinol; 2016 Jan 13; 228(1):R1-18. PubMed ID: 26432905
    [Abstract] [Full Text] [Related]

  • 28. Tumor suppressive microRNA-133a regulates novel molecular networks in lung squamous cell carcinoma.
    Moriya Y, Nohata N, Kinoshita T, Mutallip M, Okamoto T, Yoshida S, Suzuki M, Yoshino I, Seki N.
    J Hum Genet; 2012 Jan 13; 57(1):38-45. PubMed ID: 22089643
    [Abstract] [Full Text] [Related]

  • 29. Effect of diet on microRNA expression in ovine subcutaneous and visceral adipose tissues.
    Meale SJ, Romao JM, He ML, Chaves AV, McAllister TA, Guan LL.
    J Anim Sci; 2014 Aug 13; 92(8):3328-37. PubMed ID: 24893997
    [Abstract] [Full Text] [Related]

  • 30. miR-31a-5p promotes postnatal cardiomyocyte proliferation by targeting RhoBTB1.
    Xiao J, Liu H, Cretoiu D, Toader DO, Suciu N, Shi J, Shen S, Bei Y, Sluijter JP, Das S, Kong X, Li X.
    Exp Mol Med; 2017 Oct 20; 49(10):e386. PubMed ID: 29053138
    [Abstract] [Full Text] [Related]

  • 31. Comprehensive analysis of microRNA-regulated protein interaction network reveals the tumor suppressive role of microRNA-149 in human hepatocellular carcinoma via targeting AKT-mTOR pathway.
    Zhang Y, Guo X, Xiong L, Yu L, Li Z, Guo Q, Li Z, Li B, Lin N.
    Mol Cancer; 2014 Nov 26; 13():253. PubMed ID: 25424347
    [Abstract] [Full Text] [Related]

  • 32. Keloid microRNA expression analysis and the influence of miR-199a-5p on the proliferation of keloid fibroblasts.
    Wu ZY, Lu L, Liang J, Guo XR, Zhang PH, Luo SJ.
    Genet Mol Res; 2014 Apr 14; 13(2):2727-38. PubMed ID: 24782087
    [Abstract] [Full Text] [Related]

  • 33. miR-134 Modulates the Proliferation of Human Cardiomyocyte Progenitor Cells by Targeting Meis2.
    Wu YH, Zhao H, Zhou LP, Zhao CX, Wu YF, Zhen LX, Li J, Ge DX, Xu L, Lin L, Liu Y, Liang DD, Chen YH.
    Int J Mol Sci; 2015 Oct 23; 16(10):25199-213. PubMed ID: 26512644
    [Abstract] [Full Text] [Related]

  • 34. Regulation of cardiomyocyte proliferation during development and regeneration.
    Takeuchi T.
    Dev Growth Differ; 2014 Jun 23; 56(5):402-9. PubMed ID: 24738847
    [Abstract] [Full Text] [Related]

  • 35. Expression profiling and functional characterization of miR-192 throughout sheep skeletal muscle development.
    Zhao Q, Kang Y, Wang HY, Guan WJ, Li XC, Jiang L, He XH, Pu YB, Han JL, Ma YH, Zhao QJ.
    Sci Rep; 2016 Jul 25; 6():30281. PubMed ID: 27452271
    [Abstract] [Full Text] [Related]

  • 36. Functional screening identifies miRNAs inducing cardiac regeneration.
    Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, Giacca M.
    Nature; 2012 Dec 20; 492(7429):376-81. PubMed ID: 23222520
    [Abstract] [Full Text] [Related]

  • 37. Cardiac Disease Status Dictates Functional mRNA Targeting Profiles of Individual MicroRNAs.
    Matkovich SJ, Dorn GW, Grossenheider TC, Hecker PA.
    Circ Cardiovasc Genet; 2015 Dec 20; 8(6):774-84. PubMed ID: 26553694
    [Abstract] [Full Text] [Related]

  • 38. MiR-133a induces apoptosis through direct regulation of GSTP1 in bladder cancer cell lines.
    Uchida Y, Chiyomaru T, Enokida H, Kawakami K, Tatarano S, Kawahara K, Nishiyama K, Seki N, Nakagawa M.
    Urol Oncol; 2013 Jan 20; 31(1):115-23. PubMed ID: 21396852
    [Abstract] [Full Text] [Related]

  • 39. Cardiomyocyte proliferation in zebrafish and mammals: lessons for human disease.
    Matrone G, Tucker CS, Denvir MA.
    Cell Mol Life Sci; 2017 Apr 20; 74(8):1367-1378. PubMed ID: 27812722
    [Abstract] [Full Text] [Related]

  • 40. Delineating the Dynamic Transcriptome Response of mRNA and microRNA during Zebrafish Heart Regeneration.
    Klett H, Jürgensen L, Most P, Busch M, Günther F, Dobreva G, Leuschner F, Hassel D, Busch H, Boerries M.
    Biomolecules; 2018 Dec 28; 9(1):. PubMed ID: 30597924
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 24.