These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
675 related items for PubMed ID: 26202385
1. Photoreactive Polymers Bearing a Zwitterionic Phosphorylcholine Group for Surface Modification of Biomaterials. Lin X, Fukazawa K, Ishihara K. ACS Appl Mater Interfaces; 2015 Aug 12; 7(31):17489-98. PubMed ID: 26202385 [Abstract] [Full Text] [Related]
2. Photoinduced inhibition of DNA unwinding in vitro with water-soluble polymers containing both phosphorylcholine and photoreactive groups. Lin X, Fukazawa K, Ishihara K. Acta Biomater; 2016 Aug 12; 40():226-234. PubMed ID: 27045692 [Abstract] [Full Text] [Related]
3. Cell adhesion control on photoreactive phospholipid polymer surfaces. Byambaa B, Konno T, Ishihara K. Colloids Surf B Biointerfaces; 2012 Nov 01; 99():1-6. PubMed ID: 21982212 [Abstract] [Full Text] [Related]
4. Synthesis of photoreactive phospholipid polymers for use in versatile surface modification of various materials to obtain extreme wettability. Fukazawa K, Ishihara K. ACS Appl Mater Interfaces; 2013 Aug 14; 5(15):6832-6. PubMed ID: 23905848 [Abstract] [Full Text] [Related]
5. Effects of molecular architecture of phospholipid polymers on surface modification of segmented polyurethanes. Liu Y, Inoue Y, Sakata S, Kakinoki S, Yamaoka T, Ishihara K. J Biomater Sci Polym Ed; 2014 Aug 14; 25(5):474-86. PubMed ID: 24417469 [Abstract] [Full Text] [Related]
6. High lubricious surface of cobalt-chromium-molybdenum alloy prepared by grafting poly(2-methacryloyloxyethyl phosphorylcholine). Kyomoto M, Iwasaki Y, Moro T, Konno T, Miyaji F, Kawaguchi H, Takatori Y, Nakamura K, Ishihara K. Biomaterials; 2007 Jul 14; 28(20):3121-30. PubMed ID: 17416412 [Abstract] [Full Text] [Related]
7. Preparation of a thick polymer brush layer composed of poly(2-methacryloyloxyethyl phosphorylcholine) by surface-initiated atom transfer radical polymerization and analysis of protein adsorption resistance. Inoue Y, Onodera Y, Ishihara K. Colloids Surf B Biointerfaces; 2016 May 01; 141():507-512. PubMed ID: 26896657 [Abstract] [Full Text] [Related]
8. Self-initiated surface graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on poly(ether ether ketone) by photoirradiation. Kyomoto M, Ishihara K. ACS Appl Mater Interfaces; 2009 Mar 01; 1(3):537-42. PubMed ID: 20355972 [Abstract] [Full Text] [Related]
9. Effects of molecular architecture of photoreactive phospholipid polymer on adsorption and reaction on substrate surface under aqueous condition. Ishihara K, Suzuki K, Inoue Y, Fukazawa K. J Biomater Sci Polym Ed; 2021 Mar 01; 32(4):419-437. PubMed ID: 33075239 [Abstract] [Full Text] [Related]
10. Long-lasting hydrophilic surface generated on poly(dimethyl siloxane) with photoreactive zwitterionic polymers. Nakano H, Kakinoki S, Iwasaki Y. Colloids Surf B Biointerfaces; 2021 Sep 01; 205():111900. PubMed ID: 34102530 [Abstract] [Full Text] [Related]
11. Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization. Goda T, Konno T, Takai M, Moro T, Ishihara K. Biomaterials; 2006 Oct 01; 27(30):5151-60. PubMed ID: 16797692 [Abstract] [Full Text] [Related]
12. Surface modification on microfluidic devices with 2-methacryloyloxyethyl phosphorylcholine polymers for reducing unfavorable protein adsorption. Sibarani J, Takai M, Ishihara K. Colloids Surf B Biointerfaces; 2007 Jan 15; 54(1):88-93. PubMed ID: 17112710 [Abstract] [Full Text] [Related]
13. Durable modification of segmented polyurethane for elastic blood-contacting devices by graft-type 2-methacryloyloxyethyl phosphorylcholine copolymer. Liu Y, Inoue Y, Mahara A, Kakinoki S, Yamaoka T, Ishihara K. J Biomater Sci Polym Ed; 2014 Jan 15; 25(14-15):1514-29. PubMed ID: 24894706 [Abstract] [Full Text] [Related]
14. Bioactive zwitterionic polymer brushes grafted from silicon wafers via SI-ATRP for enhancement of antifouling properties and endothelial cell selectivity. Wei Y, Zhang J, Feng X, Liu D. J Biomater Sci Polym Ed; 2017 Dec 15; 28(18):2101-2116. PubMed ID: 28891389 [Abstract] [Full Text] [Related]
15. Copolymers of 2-methacryloyloxyethyl phosphorylcholine (MPC) as biomaterials. Nakabayashi N, Iwasaki Y. Biomed Mater Eng; 2004 Dec 15; 14(4):345-54. PubMed ID: 15472384 [Abstract] [Full Text] [Related]
16. Surface modification of poly(ether ether ketone) with methacryloyl-functionalized phospholipid polymers via self-initiation graft polymerization. Kawasaki Y, Iwasaki Y. J Biomater Sci Polym Ed; 2014 Dec 15; 25(9):895-906. PubMed ID: 24766535 [Abstract] [Full Text] [Related]
17. Reduced platelets and bacteria adhesion on poly(ether ether ketone) by photoinduced and self-initiated graft polymerization of 2-methacryloyloxyethyl phosphorylcholine. Tateishi T, Kyomoto M, Kakinoki S, Yamaoka T, Ishihara K. J Biomed Mater Res A; 2014 May 15; 102(5):1342-9. PubMed ID: 23720384 [Abstract] [Full Text] [Related]
18. Copolymer coatings consisting of 2-methacryloyloxyethyl phosphorylcholine and 3-methacryloxypropyl trimethoxysilane via ATRP to improve cellulose biocompatibility. Yuan B, Chen Q, Ding WQ, Liu PS, Wu SS, Lin SC, Shen J, Gai Y. ACS Appl Mater Interfaces; 2012 Aug 15; 4(8):4031-9. PubMed ID: 22856677 [Abstract] [Full Text] [Related]
19. Examination of 2-methacryloyloxyethyl phosphorylcholine polymer coated acrylic resin denture base material: surface characteristics and Candida albicans adhesion. Türkcan İ, Nalbant AD, Bat E, Akca G. J Mater Sci Mater Med; 2018 Jul 03; 29(7):107. PubMed ID: 29971499 [Abstract] [Full Text] [Related]
20. Nano-scale surface modification of a segmented polyurethane with a phospholipid polymer. Morimoto N, Watanabe A, Iwasaki Y, Akiyoshi K, Ishihara K. Biomaterials; 2004 Oct 03; 25(23):5353-61. PubMed ID: 15130720 [Abstract] [Full Text] [Related] Page: [Next] [New Search]