These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
403 related items for PubMed ID: 26203665
1. Endothelial-like malignant glioma cells in dynamic three dimensional culture identifies a role for VEGF and FGFR in a tumor-derived angiogenic response. Smith SJ, Ward JH, Tan C, Grundy RG, Rahman R. Oncotarget; 2015 Sep 08; 6(26):22191-205. PubMed ID: 26203665 [Abstract] [Full Text] [Related]
2. Inhibition of fibroblast growth factor/fibroblast growth factor receptor activity in glioma cells impedes tumor growth by both angiogenesis-dependent and -independent mechanisms. Auguste P, Gürsel DB, Lemière S, Reimers D, Cuevas P, Carceller F, Di Santo JP, Bikfalvi A. Cancer Res; 2001 Feb 15; 61(4):1717-26. PubMed ID: 11245488 [Abstract] [Full Text] [Related]
3. Enhancement of anti-tumor activity by low-dose combination of the recombinant urokinase kringle domain and celecoxib in a glioma model. Kim CK, Joe YA, Lee SK, Kim EK, O E, Kim HK, Oh BJ, Hong SH, Hong YK. Cancer Lett; 2010 Feb 28; 288(2):251-60. PubMed ID: 19664879 [Abstract] [Full Text] [Related]
4. Tumor stromal-derived factor-1 recruits vascular progenitors to mitotic neovasculature, where microenvironment influences their differentiated phenotypes. Aghi M, Cohen KS, Klein RJ, Scadden DT, Chiocca EA. Cancer Res; 2006 Sep 15; 66(18):9054-64. PubMed ID: 16982747 [Abstract] [Full Text] [Related]
6. Autophagy-induced KDR/VEGFR-2 activation promotes the formation of vasculogenic mimicry by glioma stem cells. Wu HB, Yang S, Weng HY, Chen Q, Zhao XL, Fu WJ, Niu Q, Ping YF, Wang JM, Zhang X, Yao XH, Bian XW. Autophagy; 2017 Sep 02; 13(9):1528-1542. PubMed ID: 28812437 [Abstract] [Full Text] [Related]
7. Angiogenesis of glioma: evaluation of ultrastructural characteristics of microvessels and tubular bodies (Weibel-Palade) in endothelial cells and immunohistochemical findings with VEGF and p53 protein. Miyagami M, Katayama Y. Med Mol Morphol; 2005 Mar 02; 38(1):36-42. PubMed ID: 16158178 [Abstract] [Full Text] [Related]
9. Decrease of VEGF-A in myeloid cells attenuates glioma progression and prolongs survival in an experimental glioma model. Osterberg N, Ferrara N, Vacher J, Gaedicke S, Niedermann G, Weyerbrock A, Doostkam S, Schaefer HE, Plate KH, Machein MR. Neuro Oncol; 2016 Jul 02; 18(7):939-49. PubMed ID: 26951383 [Abstract] [Full Text] [Related]
10. Vascular endothelial growth factor isoforms display distinct activities in promoting tumor angiogenesis at different anatomic sites. Guo P, Xu L, Pan S, Brekken RA, Yang ST, Whitaker GB, Nagane M, Thorpe PE, Rosenbaum JS, Su Huang HJ, Cavenee WK, Cheng SY. Cancer Res; 2001 Dec 01; 61(23):8569-77. PubMed ID: 11731444 [Abstract] [Full Text] [Related]
11. The anti-angiogenic role of soluble-form VEGF receptor in malignant gliomas. Takano S, Ishikawa E, Matsuda M, Sakamoto N, Akutsu H, Yamamoto T, Matsumura A. Int J Oncol; 2017 Feb 01; 50(2):515-524. PubMed ID: 28000842 [Abstract] [Full Text] [Related]
18. The relevance of cell proliferation, vascular endothelial growth factor, and basic fibroblast growth factor production to angiogenesis and tumorigenicity in human glioma cell lines. Ke LD, Shi YX, Im SA, Chen X, Yung WK. Clin Cancer Res; 2000 Jun 01; 6(6):2562-72. PubMed ID: 10873113 [Abstract] [Full Text] [Related]
19. Scatter factor/hepatocyte growth factor gene transfer enhances glioma growth and angiogenesis in vivo. Laterra J, Nam M, Rosen E, Rao JS, Lamszus K, Goldberg ID, Johnston P. Lab Invest; 1997 Apr 01; 76(4):565-77. PubMed ID: 9111517 [Abstract] [Full Text] [Related]
20. Expression of angiopoietin-2 in human glioma cells and its role for angiogenesis. Koga K, Todaka T, Morioka M, Hamada J, Kai Y, Yano S, Okamura A, Takakura N, Suda T, Ushio Y. Cancer Res; 2001 Aug 15; 61(16):6248-54. PubMed ID: 11507079 [Abstract] [Full Text] [Related] Page: [Next] [New Search]