These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


581 related items for PubMed ID: 26205245

  • 1. Glucose repression in Saccharomyces cerevisiae.
    Kayikci Ö, Nielsen J.
    FEMS Yeast Res; 2015 Sep; 15(6):. PubMed ID: 26205245
    [Abstract] [Full Text] [Related]

  • 2. Integration of transcriptional and posttranslational regulation in a glucose signal transduction pathway in Saccharomyces cerevisiae.
    Kim JH, Brachet V, Moriya H, Johnston M.
    Eukaryot Cell; 2006 Jan; 5(1):167-73. PubMed ID: 16400179
    [Abstract] [Full Text] [Related]

  • 3. Two different signals regulate repression and induction of gene expression by glucose.
    Ozcan S.
    J Biol Chem; 2002 Dec 06; 277(49):46993-7. PubMed ID: 12351652
    [Abstract] [Full Text] [Related]

  • 4. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae.
    Schüller HJ.
    Curr Genet; 2003 Jun 06; 43(3):139-60. PubMed ID: 12715202
    [Abstract] [Full Text] [Related]

  • 5. Carbon catabolite repression: not only for glucose.
    Simpson-Lavy K, Kupiec M.
    Curr Genet; 2019 Dec 06; 65(6):1321-1323. PubMed ID: 31119370
    [Abstract] [Full Text] [Related]

  • 6. Carbon Catabolite Repression in Yeast is Not Limited to Glucose.
    Simpson-Lavy K, Kupiec M.
    Sci Rep; 2019 Apr 24; 9(1):6491. PubMed ID: 31019232
    [Abstract] [Full Text] [Related]

  • 7. Glucose regulation of the paralogous glucose sensing receptors Rgt2 and Snf3 of the yeast Saccharomyces cerevisiae.
    Kim JH, Rodriguez R.
    Biochim Biophys Acta Gen Subj; 2021 Jun 24; 1865(6):129881. PubMed ID: 33617932
    [Abstract] [Full Text] [Related]

  • 8. [Effect of MIG1 and SNF1 deletion on simultaneous utilization of glucose and xylose by Saccharomyces cerevisiae].
    Cai Y, Qi X, Qi Q, Lin Y, Wang Z, Wang Q.
    Sheng Wu Gong Cheng Xue Bao; 2018 Jan 25; 34(1):54-67. PubMed ID: 29380571
    [Abstract] [Full Text] [Related]

  • 9. Effects of SNF1 on Maltose Metabolism and Leavening Ability of Baker's Yeast in Lean Dough.
    Zhang CY, Bai XW, Lin X, Liu XE, Xiao DG.
    J Food Sci; 2015 Dec 25; 80(12):M2879-85. PubMed ID: 26580148
    [Abstract] [Full Text] [Related]

  • 10. Mth1 receives the signal given by the glucose sensors Snf3 and Rgt2 in Saccharomyces cerevisiae.
    Lafuente MJ, Gancedo C, Jauniaux JC, Gancedo JM.
    Mol Microbiol; 2000 Jan 25; 35(1):161-72. PubMed ID: 10632886
    [Abstract] [Full Text] [Related]

  • 11. Glucose as a hormone: receptor-mediated glucose sensing in the yeast Saccharomyces cerevisiae.
    Johnston M, Kim JH.
    Biochem Soc Trans; 2005 Feb 25; 33(Pt 1):247-52. PubMed ID: 15667318
    [Abstract] [Full Text] [Related]

  • 12. Regulatory network connecting two glucose signal transduction pathways in Saccharomyces cerevisiae.
    Kaniak A, Xue Z, Macool D, Kim JH, Johnston M.
    Eukaryot Cell; 2004 Feb 25; 3(1):221-31. PubMed ID: 14871952
    [Abstract] [Full Text] [Related]

  • 13. Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae.
    Ozcan S, Dover J, Johnston M.
    EMBO J; 1998 May 01; 17(9):2566-73. PubMed ID: 9564039
    [Abstract] [Full Text] [Related]

  • 14. Springing into Action: Reg2 Negatively Regulates Snf1 Protein Kinase and Facilitates Recovery from Prolonged Glucose Starvation in Saccharomyces cerevisiae.
    Maziarz M, Shevade A, Barrett L, Kuchin S.
    Appl Environ Microbiol; 2016 Jul 01; 82(13):3875-3885. PubMed ID: 27107116
    [Abstract] [Full Text] [Related]

  • 15. Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae.
    Schmidt MC, McCartney RR, Zhang X, Tillman TS, Solimeo H, Wölfl S, Almonte C, Watkins SC.
    Mol Cell Biol; 1999 Jul 01; 19(7):4561-71. PubMed ID: 10373505
    [Abstract] [Full Text] [Related]

  • 16. Asymmetric signal transduction through paralogs that comprise a genetic switch for sugar sensing in Saccharomyces cerevisiae.
    Sabina J, Johnston M.
    J Biol Chem; 2009 Oct 23; 284(43):29635-43. PubMed ID: 19720826
    [Abstract] [Full Text] [Related]

  • 17. Expression of high-affinity glucose transport protein Hxt2p of Saccharomyces cerevisiae is both repressed and induced by glucose and appears to be regulated posttranslationally.
    Wendell DL, Bisson LF.
    J Bacteriol; 1994 Jun 23; 176(12):3730-7. PubMed ID: 8206851
    [Abstract] [Full Text] [Related]

  • 18. Transcriptional regulation of the protein kinase a subunits in Saccharomyces cerevisiae during fermentative growth.
    Galello F, Pautasso C, Reca S, Cañonero L, Portela P, Moreno S, Rossi S.
    Yeast; 2017 Dec 23; 34(12):495-508. PubMed ID: 28812308
    [Abstract] [Full Text] [Related]

  • 19. Biochemical evidence for glucose-independent induction of HXT expression in Saccharomyces cerevisiae.
    Pasula S, Jouandot D, Kim JH.
    FEBS Lett; 2007 Jul 10; 581(17):3230-4. PubMed ID: 17586499
    [Abstract] [Full Text] [Related]

  • 20. Function and regulation of yeast hexose transporters.
    Ozcan S, Johnston M.
    Microbiol Mol Biol Rev; 1999 Sep 10; 63(3):554-69. PubMed ID: 10477308
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 30.