These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
238 related items for PubMed ID: 26207045
1. Complex coupled metabolic and prokaryotic community responses to increasing temperatures in anaerobic marine sediments: critical temperatures and substrate changes. Roussel EG, Cragg BA, Webster G, Sass H, Tang X, Williams AS, Gorra R, Weightman AJ, Parkes RJ. FEMS Microbiol Ecol; 2015 Aug; 91(8):fiv084. PubMed ID: 26207045 [Abstract] [Full Text] [Related]
2. Prokaryotic functional diversity in different biogeochemical depth zones in tidal sediments of the Severn Estuary, UK, revealed by stable-isotope probing. Webster G, Rinna J, Roussel EG, Fry JC, Weightman AJ, Parkes RJ. FEMS Microbiol Ecol; 2010 May; 72(2):179-97. PubMed ID: 20337706 [Abstract] [Full Text] [Related]
3. Anaerobic oxidation of methane at different temperature regimes in Guaymas Basin hydrothermal sediments. Biddle JF, Cardman Z, Mendlovitz H, Albert DB, Lloyd KG, Boetius A, Teske A. ISME J; 2012 May; 6(5):1018-31. PubMed ID: 22094346 [Abstract] [Full Text] [Related]
4. On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico. Orcutt B, Samarkin V, Boetius A, Joye S. Environ Microbiol; 2008 May; 10(5):1108-17. PubMed ID: 18218032 [Abstract] [Full Text] [Related]
5. Contrasting relationships between biogeochemistry and prokaryotic diversity depth profiles along an estuarine sediment gradient. O'Sullivan LA, Sass AM, Webster G, Fry JC, Parkes RJ, Weightman AJ. FEMS Microbiol Ecol; 2013 Jul; 85(1):143-57. PubMed ID: 23480711 [Abstract] [Full Text] [Related]
6. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark). Parkes RJ, Cragg BA, Banning N, Brock F, Webster G, Fry JC, Hornibrook E, Pancost RD, Kelly S, Knab N, Jørgensen BB, Rinna J, Weightman AJ. Environ Microbiol; 2007 May; 9(5):1146-61. PubMed ID: 17472631 [Abstract] [Full Text] [Related]
7. Interrogation of Chesapeake Bay sediment microbial communities for intrinsic alkane-utilizing potential under anaerobic conditions. Johnson JM, Wawrik B, Isom C, Boling WB, Callaghan AV. FEMS Microbiol Ecol; 2015 Feb; 91(2):1-14. PubMed ID: 25764556 [Abstract] [Full Text] [Related]
8. Response of Methanogens in Arctic Sediments to Temperature and Methanogenic Substrate Availability. Blake LI, Tveit A, Øvreås L, Head IM, Gray ND. PLoS One; 2015 Feb; 10(6):e0129733. PubMed ID: 26083466 [Abstract] [Full Text] [Related]
9. Methanogenic pathway and archaeal community structure in the sediment of eutrophic Lake Dagow: effect of temperature. Glissman K, Chin KJ, Casper P, Conrad R. Microb Ecol; 2004 Oct; 48(3):389-99. PubMed ID: 15692859 [Abstract] [Full Text] [Related]
10. Anaerobic Degradation of Non-Methane Alkanes by "Candidatus Methanoliparia" in Hydrocarbon Seeps of the Gulf of Mexico. Laso-Pérez R, Hahn C, van Vliet DM, Tegetmeyer HE, Schubotz F, Smit NT, Pape T, Sahling H, Bohrmann G, Boetius A, Knittel K, Wegener G. mBio; 2019 Aug 20; 10(4):. PubMed ID: 31431553 [Abstract] [Full Text] [Related]
12. Enrichment and cultivation of prokaryotes associated with the sulphate-methane transition zone of diffusion-controlled sediments of Aarhus Bay, Denmark, under heterotrophic conditions. Webster G, Sass H, Cragg BA, Gorra R, Knab NJ, Green CJ, Mathes F, Fry JC, Weightman AJ, Parkes RJ. FEMS Microbiol Ecol; 2011 Aug 15; 77(2):248-63. PubMed ID: 21477007 [Abstract] [Full Text] [Related]
13. Characterization of a halotolerant acetoclastic methanogen highly enriched from marine sediment and its application in removal of acetate. Kita A, Suehira K, Miura T, Okamura Y, Aki T, Matsumura Y, Tajima T, Nishio N, Nakashimada Y. J Biosci Bioeng; 2016 Feb 15; 121(2):196-202. PubMed ID: 26126941 [Abstract] [Full Text] [Related]
16. Response of fermentation and sulfate reduction to experimental temperature changes in temperate and Arctic marine sediments. Finke N, Jørgensen BB. ISME J; 2008 Aug 15; 2(8):815-29. PubMed ID: 18309360 [Abstract] [Full Text] [Related]
17. Anaerobic Methane-Oxidizing Microbial Community in a Coastal Marine Sediment: Anaerobic Methanotrophy Dominated by ANME-3. Bhattarai S, Cassarini C, Gonzalez-Gil G, Egger M, Slomp CP, Zhang Y, Esposito G, Lens PNL. Microb Ecol; 2017 Oct 15; 74(3):608-622. PubMed ID: 28389729 [Abstract] [Full Text] [Related]
18. Influences of pond geochemistry, temperature, and freeze-thaw on terminal anaerobic processes occurring in sediments of six ponds of the McMurdo Ice Shelf, near Bratina Island, Antarctica. Mountfort DO, Kaspar HF, Asher RA, Sutherland D. Appl Environ Microbiol; 2003 Jan 15; 69(1):583-92. PubMed ID: 12514045 [Abstract] [Full Text] [Related]
19. Growth of sedimentary Bathyarchaeota on lignin as an energy source. Yu T, Wu W, Liang W, Lever MA, Hinrichs KU, Wang F. Proc Natl Acad Sci U S A; 2018 Jun 05; 115(23):6022-6027. PubMed ID: 29773709 [Abstract] [Full Text] [Related]
20. The impact of temperature change on the activity and community composition of sulfate-reducing bacteria in arctic versus temperate marine sediments. Robador A, Brüchert V, Jørgensen BB. Environ Microbiol; 2009 Jul 05; 11(7):1692-703. PubMed ID: 19292778 [Abstract] [Full Text] [Related] Page: [Next] [New Search]