These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
248 related items for PubMed ID: 26208665
1. Recent Advances in Fungal Hydrophobin Towards Using in Industry. Khalesi M, Gebruers K, Derdelinckx G. Protein J; 2015 Aug; 34(4):243-55. PubMed ID: 26208665 [Abstract] [Full Text] [Related]
2. A Structural and Functional Role for Disulfide Bonds in a Class II Hydrophobin. Sallada ND, Dunn KJ, Berger BW. Biochemistry; 2018 Feb 06; 57(5):645-653. PubMed ID: 29277996 [Abstract] [Full Text] [Related]
3. Mechanism of Nonpolar Model Substances to Inhibit Primary Gushing Induced by Hydrophobin HFBI. Shokribousjein Z, Riveros Galan D, Losada-Pérez P, Wagner P, Lammertyn J, Arghir I, Golreihan A, Verachtert H, Aydın AA, De Maeyer M, Titze J, Ilberg V, Derdelinckx G. J Agric Food Chem; 2015 May 13; 63(18):4673-82. PubMed ID: 25891388 [Abstract] [Full Text] [Related]
4. Quantifying biomolecular hydrophobicity: Single molecule force spectroscopy of class II hydrophobins. Paananen A, Weich S, Szilvay GR, Leitner M, Tappura K, Ebner A. J Biol Chem; 2021 May 13; 296():100728. PubMed ID: 33933454 [Abstract] [Full Text] [Related]
5. Solution structure and interface-driven self-assembly of NC2, a new member of the Class II hydrophobin proteins. Ren Q, Kwan AH, Sunde M. Proteins; 2014 Jun 13; 82(6):990-1003. PubMed ID: 24218020 [Abstract] [Full Text] [Related]
6. Interaction and comparison of a class I hydrophobin from Schizophyllum commune and class II hydrophobins from Trichoderma reesei. Askolin S, Linder M, Scholtmeijer K, Tenkanen M, Penttilä M, de Vocht ML, Wösten HA. Biomacromolecules; 2006 Apr 13; 7(4):1295-301. PubMed ID: 16602752 [Abstract] [Full Text] [Related]
7. Investigation of the role hydrophobin monomer loops using hybrid models via molecular dynamics simulation. Chang HJ, Lee M, Na S. Colloids Surf B Biointerfaces; 2019 Jan 01; 173():128-138. PubMed ID: 30278361 [Abstract] [Full Text] [Related]
8. Amphiphilic nanotubes in the crystal structure of a biosurfactant protein hydrophobin HFBII. Kallio JM, Rouvinen J. Chem Commun (Camb); 2011 Sep 21; 47(35):9843-5. PubMed ID: 21808803 [Abstract] [Full Text] [Related]
9. Formation of amphipathic amyloid monolayers from fungal hydrophobin proteins. Morris VK, Sunde M. Methods Mol Biol; 2013 Sep 21; 996():119-29. PubMed ID: 23504421 [Abstract] [Full Text] [Related]
10. Fungal Hydrophobins and Their Self-Assembly into Functional Nanomaterials. Lo V, I-Chun Lai J, Sunde M. Adv Exp Med Biol; 2019 Sep 21; 1174():161-185. PubMed ID: 31713199 [Abstract] [Full Text] [Related]
11. Immobilization of LccC Laccase from Aspergillus nidulans on Hard Surfaces via Fungal Hydrophobins. Fokina O, Fenchel A, Winandy L, Fischer R. Appl Environ Microbiol; 2016 Nov 01; 82(21):6395-6402. PubMed ID: 27565614 [Abstract] [Full Text] [Related]
12. Self-assembled bilayers from the protein HFBII hydrophobin: nature of the adhesion energy. Basheva ES, Kralchevsky PA, Danov KD, Stoyanov SD, Blijdenstein TB, Pelan EG, Lips A. Langmuir; 2011 Apr 19; 27(8):4481-8. PubMed ID: 21413726 [Abstract] [Full Text] [Related]
13. Comparative analysis of surface coating properties of five hydrophobins from Aspergillus nidulans and Trichoderma reseei. Winandy L, Hilpert F, Schlebusch O, Fischer R. Sci Rep; 2018 Aug 13; 8(1):12033. PubMed ID: 30104653 [Abstract] [Full Text] [Related]
14. Two crystal structures of Trichoderma reesei hydrophobin HFBI--the structure of a protein amphiphile with and without detergent interaction. Hakanpää J, Szilvay GR, Kaljunen H, Maksimainen M, Linder M, Rouvinen J. Protein Sci; 2006 Sep 13; 15(9):2129-40. PubMed ID: 16882996 [Abstract] [Full Text] [Related]
15. Heterologous expression of a hydrophobin HFB1 and evaluation of its contribution to producing stable foam. Lohrasbi-Nejad A, Torkzadeh-Mahani M, Hosseinkhani S. Protein Expr Purif; 2016 Feb 13; 118():25-30. PubMed ID: 26431799 [Abstract] [Full Text] [Related]
16. The functional role of Cys3-Cys4 loop in hydrophobin HGFI. Niu B, Gong Y, Gao X, Xu H, Qiao M, Li W. Amino Acids; 2014 Nov 13; 46(11):2615-25. PubMed ID: 25240738 [Abstract] [Full Text] [Related]
17. Formation of Amphipathic Amyloid Monolayers from Fungal Hydrophobin Proteins. Ball SR, Pham CLL, Lo V, Morris VK, Kwan AH, Sunde M. Methods Mol Biol; 2020 Nov 13; 2073():55-72. PubMed ID: 31612436 [Abstract] [Full Text] [Related]
18. Hydrophobins: the protein-amphiphiles of filamentous fungi. Linder MB, Szilvay GR, Nakari-Setälä T, Penttilä ME. FEMS Microbiol Rev; 2005 Nov 13; 29(5):877-96. PubMed ID: 16219510 [Abstract] [Full Text] [Related]
19. Selective isolation of hydrophobin SC3 by solid-phase extraction with polytetrafluoroethylene microparticles and subsequent mass spectrometric analysis. Kupčík R, Zelená M, Řehulka P, Bílková Z, Česlová L. J Sep Sci; 2016 Feb 13; 39(4):717-24. PubMed ID: 26608781 [Abstract] [Full Text] [Related]
20. Layer thickness of hydrophobin films leads to oscillation in wettability. Gruner LJ, Ostermann K, Rödel G. Langmuir; 2012 May 01; 28(17):6942-9. PubMed ID: 22458322 [Abstract] [Full Text] [Related] Page: [Next] [New Search]