These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Degradation of lead-contaminated lignocellulosic waste by Phanerochaete chrysosporium and the reduction of lead toxicity. Huang DL, Zeng GM, Feng CL, Hu S, Jiang XY, Tang L, Su FF, Zhang Y, Zeng W, Liu HL. Environ Sci Technol; 2008 Jul 01; 42(13):4946-51. PubMed ID: 18678031 [Abstract] [Full Text] [Related]
23. Biological pretreatment of wheat straw by Phanerochaete chrysosporium supplemented with inorganic salts. Zeng J, Singh D, Chen S. Bioresour Technol; 2011 Feb 01; 102(3):3206-14. PubMed ID: 21111608 [Abstract] [Full Text] [Related]
24. Study of the degradation of methylene blue by semi-solid-state fermentation of agricultural residues with Phanerochaete chrysosporium and reutilization of fermented residues. Zeng G, Cheng M, Huang D, Lai C, Xu P, Wei Z, Li N, Zhang C, He X, He Y. Waste Manag; 2015 Apr 01; 38():424-30. PubMed ID: 25649916 [Abstract] [Full Text] [Related]
25. Degradation enhancement of rice straw by co-culture of Phanerochaete chrysosporium and Trichoderma viride. Chen KJ, Tang JC, Xu BH, Lan SL, Cao Y. Sci Rep; 2019 Dec 23; 9(1):19708. PubMed ID: 31873163 [Abstract] [Full Text] [Related]
26. Catalase activities of Phanerochaete chrysosporium are not coordinately produced with ligninolytic metabolism: catalases from a white-rot fungus. Kwon SI, Anderson AJ. Curr Microbiol; 2001 Jan 23; 42(1):8-11. PubMed ID: 11116389 [Abstract] [Full Text] [Related]
29. Heavy metal-induced glutathione accumulation and its role in heavy metal detoxification in Phanerochaete chrysosporium. Xu P, Liu L, Zeng G, Huang D, Lai C, Zhao M, Huang C, Li N, Wei Z, Wu H, Zhang C, Lai M, He Y. Appl Microbiol Biotechnol; 2014 Jan 23; 98(14):6409-18. PubMed ID: 24723291 [Abstract] [Full Text] [Related]
31. Lead-induced oxidative stress and antioxidant response provide insight into the tolerance of Phanerochaete chrysosporium to lead exposure. Huang C, Lai C, Xu P, Zeng G, Huang D, Zhang J, Zhang C, Cheng M, Wan J, Wang R. Chemosphere; 2017 Nov 23; 187():70-77. PubMed ID: 28841433 [Abstract] [Full Text] [Related]
32. Deciphering the Fenton-reaction-aid lignocellulose degradation pattern by Phanerochaete chrysosporium with ferroferric oxide nanomaterials: Enzyme secretion, straw humification and structural alteration. Huang D, Li T, Xu P, Zeng G, Chen M, Lai C, Cheng M, Guo X, Chen S, Li Z. Bioresour Technol; 2019 Mar 23; 276():335-342. PubMed ID: 30641332 [Abstract] [Full Text] [Related]
33. Effect of nitrogen concentration in culture mediums on growth and enzyme production of Phanerochaete chrysosporium. Gao DW, Wen XH, Qian Y. J Environ Sci (China); 2005 Mar 23; 17(2):190-3. PubMed ID: 16295886 [Abstract] [Full Text] [Related]
34. Degradation of 4-nitrophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Teramoto H, Tanaka H, Wariishi H. Appl Microbiol Biotechnol; 2004 Dec 23; 66(3):312-7. PubMed ID: 15448939 [Abstract] [Full Text] [Related]
35. Solid-state production of biopulp by Phanerochaete chrysosporium using steam-exploded wheat straw as substrate. Chen H, Xu F, Li Z. Bioresour Technol; 2002 Feb 23; 81(3):261-3. PubMed ID: 11800492 [Abstract] [Full Text] [Related]
36. Lignin peroxidase is involved in the biobleaching of manganese-less oxygen-delignified hardwood kraft pulp by white-rot fungi in the solid-fermentation system. Machii Y, Hirai H, Nishida T. FEMS Microbiol Lett; 2004 Apr 15; 233(2):283-7. PubMed ID: 15063497 [Abstract] [Full Text] [Related]