These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
415 related items for PubMed ID: 26217958
21. Directional integration and pathway enrichment analysis for multi-omics data. Slobodyanyuk M, Bahcheli AT, Klein ZP, Bayati M, Strug LJ, Reimand J. Nat Commun; 2024 Jul 07; 15(1):5690. PubMed ID: 38971800 [Abstract] [Full Text] [Related]
22. Integrating multiple omics data for the discovery of potential Beclin-1 interactions in breast cancer. Chen Y, Wang X, Wang G, Li Z, Wang J, Huang L, Qin Z, Yuan X, Cheng Z, Zhang S, Yin Y, He J. Mol Biosyst; 2017 May 02; 13(5):991-999. PubMed ID: 28401970 [Abstract] [Full Text] [Related]
23. FGMD: A novel approach for functional gene module detection in cancer. Jin D, Lee H. PLoS One; 2017 May 02; 12(12):e0188900. PubMed ID: 29244808 [Abstract] [Full Text] [Related]
24. Systematic module approach identifies altered genes and pathways in four types of ovarian cancer. Liu J, Wang HL, Ma FM, Guo HP, Fang NN, Wang SS, Li XH. Mol Med Rep; 2017 Dec 02; 16(6):7907-7914. PubMed ID: 28983627 [Abstract] [Full Text] [Related]
25. A network-pathway based module identification for predicting the prognosis of ovarian cancer patients. Wang X, Wang SS, Zhou L, Yu L, Zhang LM. J Ovarian Res; 2016 Nov 02; 9(1):73. PubMed ID: 27806724 [Abstract] [Full Text] [Related]
26. Survey and comparative assessments of computational multi-omics integrative methods with multiple regulatory networks identifying distinct tumor compositions across pan-cancer data sets. Wei Z, Zhang Y, Weng W, Chen J, Cai H. Brief Bioinform; 2021 May 20; 22(3):. PubMed ID: 32533167 [Abstract] [Full Text] [Related]
27. Transporter associated with antigen processing 1 (TAP1) expression and prognostic analysis in breast, lung, liver, and ovarian cancer. Tabassum A, Samdani MN, Dhali TC, Alam R, Ahammad F, Samad A, Karpiński TM. J Mol Med (Berl); 2021 Sep 20; 99(9):1293-1309. PubMed ID: 34047812 [Abstract] [Full Text] [Related]
28. Integrating multiple types of data to identify microRNA-gene co-modules. Zhang S. Methods Mol Biol; 2013 Sep 20; 1049():215-29. PubMed ID: 23913219 [Abstract] [Full Text] [Related]
29. Genome-wide DNA copy number profiling and bioinformatics analysis of ovarian cancer reveals key genes and pathways associated with distinct invasive/migratory capabilities. Liu G, Ruan G, Huang M, Chen L, Sun P. Aging (Albany NY); 2020 Jan 02; 12(1):178-192. PubMed ID: 31895688 [Abstract] [Full Text] [Related]
30. Integration of multi-omics data to mine cancer-related gene modules. Li P, Guo M, Sun B. J Bioinform Comput Biol; 2019 Dec 02; 17(6):1950038. PubMed ID: 32019413 [Abstract] [Full Text] [Related]
31. Deep Pathway Analysis V2.0: A Pathway Analysis Framework Incorporating Multi-Dimensional Omics Data. Zhao Y, Shin DG. IEEE/ACM Trans Comput Biol Bioinform; 2021 Dec 02; 18(1):373-385. PubMed ID: 31603796 [Abstract] [Full Text] [Related]
32. Cross-species DNA copy number analyses identifies multiple 1q21-q23 subtype-specific driver genes for breast cancer. Silva GO, He X, Parker JS, Gatza ML, Carey LA, Hou JP, Moulder SL, Marcom PK, Ma J, Rosen JM, Perou CM. Breast Cancer Res Treat; 2015 Jul 02; 152(2):347-56. PubMed ID: 26109346 [Abstract] [Full Text] [Related]
33. Simultaneous Integration of Multi-omics Data Improves the Identification of Cancer Driver Modules. Silverbush D, Cristea S, Yanovich-Arad G, Geiger T, Beerenwinkel N, Sharan R. Cell Syst; 2019 May 22; 8(5):456-466.e5. PubMed ID: 31103572 [Abstract] [Full Text] [Related]
34. Classifying Breast Cancer Subtypes Using Deep Neural Networks Based on Multi-Omics Data. Lin Y, Zhang W, Cao H, Li G, Du W. Genes (Basel); 2020 Aug 04; 11(8):. PubMed ID: 32759821 [Abstract] [Full Text] [Related]
35. Logic-based analysis of gene expression data predicts association between TNF, TGFB1 and EGF pathways in basal-like breast cancer. Jo K, Santos-Buitrago B, Kim M, Rhee S, Talcott C, Kim S. Methods; 2020 Jul 01; 179():89-100. PubMed ID: 32445696 [Abstract] [Full Text] [Related]
36. Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis. Li A, Chapuy B, Varelas X, Sebastiani P, Monti S. Sci Rep; 2019 Nov 15; 9(1):16904. PubMed ID: 31729402 [Abstract] [Full Text] [Related]
37. Identification of hub subnetwork based on topological features of genes in breast cancer. Zhuang DY, Jiang L, He QQ, Zhou P, Yue T. Int J Mol Med; 2015 Mar 15; 35(3):664-74. PubMed ID: 25573623 [Abstract] [Full Text] [Related]
38. Integrated multi-omics analysis of genomics, epigenomics, and transcriptomics in ovarian carcinoma. Zheng M, Hu Y, Gou R, Wang J, Nie X, Li X, Liu Q, Liu J, Lin B. Aging (Albany NY); 2019 Jun 29; 11(12):4198-4215. PubMed ID: 31257224 [Abstract] [Full Text] [Related]
39. MOBCdb: a comprehensive database integrating multi-omics data on breast cancer for precision medicine. Xie B, Yuan Z, Yang Y, Sun Z, Zhou S, Fang X. Breast Cancer Res Treat; 2018 Jun 29; 169(3):625-632. PubMed ID: 29429018 [Abstract] [Full Text] [Related]
40. Hypomethylation of the synuclein gamma gene CpG island promotes its aberrant expression in breast carcinoma and ovarian carcinoma. Gupta A, Godwin AK, Vanderveer L, Lu A, Liu J. Cancer Res; 2003 Feb 01; 63(3):664-73. PubMed ID: 12566312 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]