These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
253 related items for PubMed ID: 26220174
1. Loss of long-chain acyl-CoA synthetase isoform 1 impairs cardiac autophagy and mitochondrial structure through mechanistic target of rapamycin complex 1 activation. Grevengoed TJ, Cooper DE, Young PA, Ellis JM, Coleman RA. FASEB J; 2015 Nov; 29(11):4641-53. PubMed ID: 26220174 [Abstract] [Full Text] [Related]
3. Deficiency of cardiac Acyl-CoA synthetase-1 induces diastolic dysfunction, but pathologic hypertrophy is reversed by rapamycin. Paul DS, Grevengoed TJ, Pascual F, Ellis JM, Willis MS, Coleman RA. Biochim Biophys Acta; 2014 Jun; 1841(6):880-7. PubMed ID: 24631848 [Abstract] [Full Text] [Related]
4. Cardiac energy dependence on glucose increases metabolites related to glutathione and activates metabolic genes controlled by mechanistic target of rapamycin. Schisler JC, Grevengoed TJ, Pascual F, Cooper DE, Ellis JM, Paul DS, Willis MS, Patterson C, Jia W, Coleman RA. J Am Heart Assoc; 2015 Feb 24; 4(2):. PubMed ID: 25713290 [Abstract] [Full Text] [Related]
5. Defective fatty acid oxidation in mice with muscle-specific acyl-CoA synthetase 1 deficiency increases amino acid use and impairs muscle function. Zhao L, Pascual F, Bacudio L, Suchanek AL, Young PA, Li LO, Martin SA, Camporez JP, Perry RJ, Shulman GI, Klett EL, Coleman RA. J Biol Chem; 2019 May 31; 294(22):8819-8833. PubMed ID: 30975900 [Abstract] [Full Text] [Related]
6. Preservation of Acyl Coenzyme A Attenuates Pathological and Metabolic Cardiac Remodeling Through Selective Lipid Trafficking. Goldenberg JR, Carley AN, Ji R, Zhang X, Fasano M, Schulze PC, Lewandowski ED. Circulation; 2019 Jun 11; 139(24):2765-2777. PubMed ID: 30909726 [Abstract] [Full Text] [Related]
7. Acyl CoA synthetase-1 links facilitated long chain fatty acid uptake to intracellular metabolic trafficking differently in hearts of male versus female mice. Goldenberg JR, Wang X, Lewandowski ED. J Mol Cell Cardiol; 2016 May 11; 94():1-9. PubMed ID: 26995156 [Abstract] [Full Text] [Related]
8. Acyl-CoA synthetase 1 deficiency alters cardiolipin species and impairs mitochondrial function. Grevengoed TJ, Martin SA, Katunga L, Cooper DE, Anderson EJ, Murphy RC, Coleman RA. J Lipid Res; 2015 Aug 11; 56(8):1572-82. PubMed ID: 26136511 [Abstract] [Full Text] [Related]
9. mTOR Hyperactivation by Ablation of Tuberous Sclerosis Complex 2 in the Mouse Heart Induces Cardiac Dysfunction with the Increased Number of Small Mitochondria Mediated through the Down-Regulation of Autophagy. Taneike M, Nishida K, Omiya S, Zarrinpashneh E, Misaka T, Kitazume-Taneike R, Austin R, Takaoka M, Yamaguchi O, Gambello MJ, Shah AM, Otsu K. PLoS One; 2016 Aug 11; 11(3):e0152628. PubMed ID: 27023784 [Abstract] [Full Text] [Related]
10. Regulation of fatty acid metabolism by mTOR in adult murine hearts occurs independently of changes in PGC-1α. Zhu Y, Soto J, Anderson B, Riehle C, Zhang YC, Wende AR, Jones D, McClain DA, Abel ED. Am J Physiol Heart Circ Physiol; 2013 Jul 01; 305(1):H41-51. PubMed ID: 23624629 [Abstract] [Full Text] [Related]
11. Modeling the Transition From Decompensated to Pathological Hypertrophy. Pascual F, Schisler JC, Grevengoed TJ, Willis MS, Coleman RA. J Am Heart Assoc; 2018 Apr 05; 7(8):. PubMed ID: 29622588 [Abstract] [Full Text] [Related]
12. Inflammasome, mTORC1 activation, and metabolic derangement contribute to the susceptibility of diabetics to infections. Krakauer T. Med Hypotheses; 2015 Dec 05; 85(6):997-1001. PubMed ID: 26384528 [Abstract] [Full Text] [Related]
13. Therapeutic Strategy for Targeting Aggressive Malignant Gliomas by Disrupting Their Energy Balance. Hegazy AM, Yamada D, Kobayashi M, Kohno S, Ueno M, Ali MA, Ohta K, Tadokoro Y, Ino Y, Todo T, Soga T, Takahashi C, Hirao A. J Biol Chem; 2016 Oct 07; 291(41):21496-21509. PubMed ID: 27519418 [Abstract] [Full Text] [Related]
14. Loss of cardiac carnitine palmitoyltransferase 2 results in rapamycin-resistant, acetylation-independent hypertrophy. Pereyra AS, Hasek LY, Harris KL, Berman AG, Damen FW, Goergen CJ, Ellis JM. J Biol Chem; 2017 Nov 10; 292(45):18443-18456. PubMed ID: 28916721 [Abstract] [Full Text] [Related]
15. DJ-1 activates autophagy in the repression of cardiac hypertrophy. Xue R, Jiang J, Dong B, Tan W, Sun Y, Zhao J, Chen Y, Dong Y, Liu C. Arch Biochem Biophys; 2017 Nov 01; 633():124-132. PubMed ID: 28941803 [Abstract] [Full Text] [Related]
16. TSC but not PTEN loss in starving cones of retinitis pigmentosa mice leads to an autophagy defect and mTORC1 dissociation from the lysosome. Venkatesh A, Ma S, Punzo C. Cell Death Dis; 2016 Jun 30; 7(6):e2279. PubMed ID: 27362797 [Abstract] [Full Text] [Related]
17. Inhibiting cytosolic translation and autophagy improves health in mitochondrial disease. Peng M, Ostrovsky J, Kwon YJ, Polyak E, Licata J, Tsukikawa M, Marty E, Thomas J, Felix CA, Xiao R, Zhang Z, Gasser DL, Argon Y, Falk MJ. Hum Mol Genet; 2015 Sep 01; 24(17):4829-47. PubMed ID: 26041819 [Abstract] [Full Text] [Related]
18. Mitochondrial transcription factor A is increased but expression of ATP synthase beta subunit and medium-chain acyl-CoA dehydrogenase genes are decreased in hearts of copper-deficient rats. Mao S, Leone TC, Kelly DP, Medeiros DM. J Nutr; 2000 Sep 01; 130(9):2143-50. PubMed ID: 10958805 [Abstract] [Full Text] [Related]
19. Nutrient-sensing mTORC1: Integration of metabolic and autophagic signals. Tan VP, Miyamoto S. J Mol Cell Cardiol; 2016 Jun 01; 95():31-41. PubMed ID: 26773603 [Abstract] [Full Text] [Related]
20. Long-chain acyl-CoA synthetase 1 interacts with key proteins that activate and direct fatty acids into niche hepatic pathways. Young PA, Senkal CE, Suchanek AL, Grevengoed TJ, Lin DD, Zhao L, Crunk AE, Klett EL, Füllekrug J, Obeid LM, Coleman RA. J Biol Chem; 2018 Oct 26; 293(43):16724-16740. PubMed ID: 30190326 [Abstract] [Full Text] [Related] Page: [Next] [New Search]