These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


276 related items for PubMed ID: 26229078

  • 21. Persistency of methane mitigation by dietary nitrate supplementation in dairy cows.
    van Zijderveld SM, Gerrits WJ, Dijkstra J, Newbold JR, Hulshof RB, Perdok HB.
    J Dairy Sci; 2011 Aug; 94(8):4028-38. PubMed ID: 21787938
    [Abstract] [Full Text] [Related]

  • 22. Synergistic Effects of 3-Nitrooxypropanol with Fumarate in the Regulation of Propionate Formation and Methanogenesis in Dairy Cows In Vitro.
    Liu Z, Wang K, Nan X, Cai M, Yang L, Xiong B, Zhao Y.
    Appl Environ Microbiol; 2022 Mar 22; 88(6):e0190821. PubMed ID: 35080908
    [Abstract] [Full Text] [Related]

  • 23. Linseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cows.
    van Gastelen S, Visker MHPW, Edwards JE, Antunes-Fernandes EC, Hettinga KA, Alferink SJJ, Hendriks WH, Bovenhuis H, Smidt H, Dijkstra J.
    J Dairy Sci; 2017 Nov 22; 100(11):8939-8957. PubMed ID: 28918153
    [Abstract] [Full Text] [Related]

  • 24. Effects of dietary starch content and rate of fermentation on methane production in lactating dairy cows.
    Hatew B, Podesta SC, Van Laar H, Pellikaan WF, Ellis JL, Dijkstra J, Bannink A.
    J Dairy Sci; 2015 Jan 22; 98(1):486-99. PubMed ID: 25465630
    [Abstract] [Full Text] [Related]

  • 25. Tea saponin reduced methanogenesis in vitro but increased methane yield in lactating dairy cows.
    Guyader J, Eugène M, Doreau M, Morgavi DP, Gérard C, Martin C.
    J Dairy Sci; 2017 Mar 22; 100(3):1845-1855. PubMed ID: 28109588
    [Abstract] [Full Text] [Related]

  • 26. Lactational performance, enteric methane emission, and nutrient utilization of dairy cows supplemented with botanicals.
    Martins LF, Cueva SF, Silvestre T, Stepanchenko N, Wasson DE, Wall E, Hristov AN.
    J Dairy Sci; 2024 Jan 22; 107(1):242-257. PubMed ID: 38220436
    [Abstract] [Full Text] [Related]

  • 27. Effects of carbohydrate type or bicarbonate addition to grass silage-based diets on enteric methane emissions and milk fatty acid composition in dairy cows.
    Bougouin A, Ferlay A, Doreau M, Martin C.
    J Dairy Sci; 2018 Jul 22; 101(7):6085-6097. PubMed ID: 29680648
    [Abstract] [Full Text] [Related]

  • 28. Increasing linseed supply in dairy cow diets based on hay or corn silage: Effect on enteric methane emission, rumen microbial fermentation, and digestion.
    Martin C, Ferlay A, Mosoni P, Rochette Y, Chilliard Y, Doreau M.
    J Dairy Sci; 2016 May 22; 99(5):3445-3456. PubMed ID: 26947299
    [Abstract] [Full Text] [Related]

  • 29. Performance, digestion, nitrogen balance, and emission of manure ammonia, enteric methane, and carbon dioxide in lactating cows fed diets with varying alfalfa silage-to-corn silage ratios.
    Arndt C, Powell JM, Aguerre MJ, Wattiaux MA.
    J Dairy Sci; 2015 Jan 22; 98(1):418-30. PubMed ID: 25465537
    [Abstract] [Full Text] [Related]

  • 30. Corn silage-based diet supplemented with increasing amounts of linseed oil: Effects on methane production, rumen fermentation, nutrient digestibility, nitrogen utilization, and milk production of dairy cows.
    Hassanat F, Benchaar C.
    J Dairy Sci; 2021 May 22; 104(5):5375-5390. PubMed ID: 33663815
    [Abstract] [Full Text] [Related]

  • 31. Linseed oil supplementation to dairy cows fed diets based on red clover silage or corn silage: Effects on methane production, rumen fermentation, nutrient digestibility, N balance, and milk production.
    Benchaar C, Hassanat F, Martineau R, Gervais R.
    J Dairy Sci; 2015 Nov 22; 98(11):7993-8008. PubMed ID: 26298755
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows.
    Holtshausen L, Chaves AV, Beauchemin KA, McGinn SM, McAllister TA, Odongo NE, Cheeke PR, Benchaar C.
    J Dairy Sci; 2009 Jun 22; 92(6):2809-21. PubMed ID: 19448015
    [Abstract] [Full Text] [Related]

  • 37. Feeding oregano oil and its main component carvacrol does not affect ruminal fermentation, nutrient utilization, methane emissions, milk production, or milk fatty acid composition of dairy cows.
    Benchaar C.
    J Dairy Sci; 2020 Feb 22; 103(2):1516-1527. PubMed ID: 31759586
    [Abstract] [Full Text] [Related]

  • 38. Effect of active dry yeast on lactation performance, methane production, and ruminal fermentation patterns in early-lactating Holstein cows.
    Li Y, Shen Y, Niu J, Guo Y, Pauline M, Zhao X, Li Q, Cao Y, Bi C, Zhang X, Wang Z, Gao Y, Li J.
    J Dairy Sci; 2021 Jan 22; 104(1):381-390. PubMed ID: 33272580
    [Abstract] [Full Text] [Related]

  • 39. A high dose of monensin does not reduce methane emissions of dairy cows offered pasture supplemented with grain.
    Grainger C, Williams R, Eckard RJ, Hannah MC.
    J Dairy Sci; 2010 Nov 22; 93(11):5300-8. PubMed ID: 20965346
    [Abstract] [Full Text] [Related]

  • 40. Rumen fermentation and production effects of Origanum vulgare L. leaves in lactating dairy cows.
    Tekippe JA, Hristov AN, Heyler KS, Cassidy TW, Zheljazkov VD, Ferreira JF, Karnati SK, Varga GA.
    J Dairy Sci; 2011 Oct 22; 94(10):5065-79. PubMed ID: 21943758
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.