These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


186 related items for PubMed ID: 26231137

  • 1. Hydrocarbons, the advanced biofuels produced by different organisms, the evidence that alkanes in petroleum can be renewable.
    Fu WJ, Chi Z, Ma ZC, Zhou HX, Liu GL, Lee CF, Chi ZM.
    Appl Microbiol Biotechnol; 2015 Sep; 99(18):7481-94. PubMed ID: 26231137
    [Abstract] [Full Text] [Related]

  • 2. Versatility of hydrocarbon production in cyanobacteria.
    Xie M, Wang W, Zhang W, Chen L, Lu X.
    Appl Microbiol Biotechnol; 2017 Feb; 101(3):905-919. PubMed ID: 28032195
    [Abstract] [Full Text] [Related]

  • 3. Heavy oils, principally long-chain n-alkanes secreted by Aureobasidium pullulans var. melanogenum strain P5 isolated from mangrove system.
    Liu YY, Chi Z, Wang ZP, Liu GL, Chi ZM.
    J Ind Microbiol Biotechnol; 2014 Sep; 41(9):1329-37. PubMed ID: 25038885
    [Abstract] [Full Text] [Related]

  • 4. Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle.
    Lea-Smith DJ, Biller SJ, Davey MP, Cotton CA, Perez Sepulveda BM, Turchyn AV, Scanlan DJ, Smith AG, Chisholm SW, Howe CJ.
    Proc Natl Acad Sci U S A; 2015 Nov 03; 112(44):13591-6. PubMed ID: 26438854
    [Abstract] [Full Text] [Related]

  • 5. Enzymatic reactions and pathway engineering for the production of renewable hydrocarbons.
    Jaroensuk J, Intasian P, Wattanasuepsin W, Akeratchatapan N, Kesornpun C, Kittipanukul N, Chaiyen P.
    J Biotechnol; 2020 Feb 10; 309():1-19. PubMed ID: 31866428
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Expanding the product profile of a microbial alkane biosynthetic pathway.
    Harger M, Zheng L, Moon A, Ager C, An JH, Choe C, Lai YL, Mo B, Zong D, Smith MD, Egbert RG, Mills JH, Baker D, Pultz IS, Siegel JB.
    ACS Synth Biol; 2013 Jan 18; 2(1):59-62. PubMed ID: 23656326
    [Abstract] [Full Text] [Related]

  • 11. Utilisation of hydrocarbons and production of surfactants by bacteria isolated from plant leaf surfaces.
    Oso S, Walters M, Schlechter RO, Remus-Emsermann MNP.
    FEMS Microbiol Lett; 2019 Mar 01; 366(6):. PubMed ID: 30916756
    [Abstract] [Full Text] [Related]

  • 12. Anaerobic coculture of microalgae with Thermosipho globiformans and Methanocaldococcus jannaschii at 68°C enhances generation of n-alkane-rich biofuels after pyrolysis.
    Yamane K, Matsuyama S, Igarashi K, Utsumi M, Shiraiwa Y, Kuwabara T.
    Appl Environ Microbiol; 2013 Feb 01; 79(3):924-30. PubMed ID: 23183975
    [Abstract] [Full Text] [Related]

  • 13. [Use of bacteria for production of protein derived from hydrocarbons].
    Chepigo SV, Gradova NB, Mikhaleva VV, Kozlova LI, Popova TE.
    Prikl Biokhim Mikrobiol; 1974 Feb 01; 10(2):181-6. PubMed ID: 4830964
    [No Abstract] [Full Text] [Related]

  • 14. Metabolic engineering of Cupriavidus necator for heterotrophic and autotrophic alka(e)ne production.
    Crépin L, Lombard E, Guillouet SE.
    Metab Eng; 2016 Sep 01; 37():92-101. PubMed ID: 27212691
    [Abstract] [Full Text] [Related]

  • 15. Isolation and characterization of Pseudomonas aeruginosa strain SJTD-2 for degrading long-chain n-alkanes and crude oil.
    Xu J, Liu H, Liu J, Liang R.
    Wei Sheng Wu Xue Bao; 2015 Jun 04; 55(6):755-63. PubMed ID: 26563001
    [Abstract] [Full Text] [Related]

  • 16. Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli.
    Howard TP, Middelhaufe S, Moore K, Edner C, Kolak DM, Taylor GN, Parker DA, Lee R, Smirnoff N, Aves SJ, Love J.
    Proc Natl Acad Sci U S A; 2013 May 07; 110(19):7636-41. PubMed ID: 23610415
    [Abstract] [Full Text] [Related]

  • 17. Quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria by gas chromatography-mass spectrometry.
    Guan W, Zhao H, Lu X, Wang C, Yang M, Bai F.
    J Chromatogr A; 2011 Nov 11; 1218(45):8289-93. PubMed ID: 21982444
    [Abstract] [Full Text] [Related]

  • 18. Enumeration of petroleum-degrading marine and estuarine microorganisms by the most probable number method.
    Mills AL, Breuil C, Colwell RR.
    Can J Microbiol; 1978 May 11; 24(5):522-7. PubMed ID: 350362
    [Abstract] [Full Text] [Related]

  • 19. Enhanced production of n-alkanes in Escherichia coli by spatial organization of biosynthetic pathway enzymes.
    Rahmana Z, Sung BH, Yi JY, Bui le M, Lee JH, Kim SC.
    J Biotechnol; 2014 Dec 20; 192 Pt A():187-91. PubMed ID: 25456061
    [Abstract] [Full Text] [Related]

  • 20. Simultaneous determination of hydrocarbon renewable diesel, biodiesel and petroleum diesel contents in diesel fuel blends using near infrared (NIR) spectroscopy and chemometrics.
    Alves JC, Poppi RJ.
    Analyst; 2013 Nov 07; 138(21):6477-87. PubMed ID: 23991427
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.