These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
312 related items for PubMed ID: 26232702
1. Self-assembled nanoparticles from hyaluronic acid-paclitaxel prodrugs for direct cytosolic delivery and enhanced antitumor activity. Xu C, He W, Lv Y, Qin C, Shen L, Yin L. Int J Pharm; 2015 Sep 30; 493(1-2):172-81. PubMed ID: 26232702 [Abstract] [Full Text] [Related]
2. Dual targeting folate-conjugated hyaluronic acid polymeric micelles for paclitaxel delivery. Liu Y, Sun J, Cao W, Yang J, Lian H, Li X, Sun Y, Wang Y, Wang S, He Z. Int J Pharm; 2011 Dec 12; 421(1):160-9. PubMed ID: 21945183 [Abstract] [Full Text] [Related]
4. Well-Defined Redox-Sensitive Polyethene Glycol-Paclitaxel Prodrug Conjugate for Tumor-Specific Delivery of Paclitaxel Using Octreotide for Tumor Targeting. Yin T, Wu Q, Wang L, Yin L, Zhou J, Huo M. Mol Pharm; 2015 Aug 03; 12(8):3020-31. PubMed ID: 26086430 [Abstract] [Full Text] [Related]
5. pH-sensitive polymeric micelles formed by doxorubicin conjugated prodrugs for co-delivery of doxorubicin and paclitaxel. Ma Y, Fan X, Li L. Carbohydr Polym; 2016 Feb 10; 137():19-29. PubMed ID: 26686101 [Abstract] [Full Text] [Related]
7. Paclitaxel delivered by CD44 receptor-targeting and endosomal pH sensitive dual functionalized hyaluronic acid micelles for multidrug resistance reversion. Liu Y, Zhou C, Wei S, Yang T, Lan Y, Cao A, Yang J, Hou Y. Colloids Surf B Biointerfaces; 2018 Oct 01; 170():330-340. PubMed ID: 29936386 [Abstract] [Full Text] [Related]
9. Biological evaluation of redox-sensitive micelles based on hyaluronic acid-deoxycholic acid conjugates for tumor-specific delivery of paclitaxel. Li J, Yin T, Wang L, Yin L, Zhou J, Huo M. Int J Pharm; 2015 Apr 10; 483(1-2):38-48. PubMed ID: 25655715 [Abstract] [Full Text] [Related]
10. Delivery of baicalein and paclitaxel using self-assembled nanoparticles: synergistic antitumor effect in vitro and in vivo. Wang W, Xi M, Duan X, Wang Y, Kong F. Int J Nanomedicine; 2015 Apr 10; 10():3737-50. PubMed ID: 26045664 [Abstract] [Full Text] [Related]
11. Hyaluronic acid-shelled acid-activatable paclitaxel prodrug micelles effectively target and treat CD44-overexpressing human breast tumor xenografts in vivo. Zhong Y, Goltsche K, Cheng L, Xie F, Meng F, Deng C, Zhong Z, Haag R. Biomaterials; 2016 Apr 10; 84():250-261. PubMed ID: 26851390 [Abstract] [Full Text] [Related]
12. Acetal-linked paclitaxel prodrug micellar nanoparticles as a versatile and potent platform for cancer therapy. Gu Y, Zhong Y, Meng F, Cheng R, Deng C, Zhong Z. Biomacromolecules; 2013 Aug 12; 14(8):2772-80. PubMed ID: 23777504 [Abstract] [Full Text] [Related]
13. A novel localized co-delivery system with lapatinib microparticles and paclitaxel nanoparticles in a peritumorally injectable in situ hydrogel. Hu H, Lin Z, He B, Dai W, Wang X, Wang J, Zhang X, Zhang H, Zhang Q. J Control Release; 2015 Dec 28; 220(Pt A):189-200. PubMed ID: 26474677 [Abstract] [Full Text] [Related]
14. CD44 Receptor Targeting and Endosomal pH-Sensitive Dual Functional Hyaluronic Acid Micelles for Intracellular Paclitaxel Delivery. Liu Y, Zhou C, Wang W, Yang J, Wang H, Hong W, Huang Y. Mol Pharm; 2016 Dec 05; 13(12):4209-4221. PubMed ID: 27796093 [Abstract] [Full Text] [Related]
15. Nanoplatform Assembled from a CD44-Targeted Prodrug and Smart Liposomes for Dual Targeting of Tumor Microenvironment and Cancer Cells. Lv Y, Xu C, Zhao X, Lin C, Yang X, Xin X, Zhang L, Qin C, Han X, Yang L, He W, Yin L. ACS Nano; 2018 Feb 27; 12(2):1519-1536. PubMed ID: 29350904 [Abstract] [Full Text] [Related]
16. Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel. Li J, Huo M, Wang J, Zhou J, Mohammad JM, Zhang Y, Zhu Q, Waddad AY, Zhang Q. Biomaterials; 2012 Mar 27; 33(7):2310-20. PubMed ID: 22166223 [Abstract] [Full Text] [Related]
17. Novel free-paclitaxel-loaded redox-responsive nanoparticles based on a disulfide-linked poly(ethylene glycol)-drug conjugate for intracellular drug delivery: synthesis, characterization, and antitumor activity in vitro and in vivo. Chuan X, Song Q, Lin J, Chen X, Zhang H, Dai W, He B, Wang X, Zhang Q. Mol Pharm; 2014 Oct 06; 11(10):3656-70. PubMed ID: 25208098 [Abstract] [Full Text] [Related]
18. Investigation on vitamin e succinate based intelligent hyaluronic acid micelles for overcoming drug resistance and enhancing anticancer efficacy. Hou L, Tian C, Chen D, Yuan Y, Yan Y, Huang Q, Zhang H, Zhang Z. Eur J Pharm Sci; 2019 Dec 01; 140():105071. PubMed ID: 31525433 [Abstract] [Full Text] [Related]
19. Unveiling the potential of ursolic acid modified hyaluronate nanoparticles for combination drug therapy in triple negative breast cancer. Sharma R, Yadav V, Jha S, Dighe S, Jain S. Carbohydr Polym; 2024 Aug 15; 338():122196. PubMed ID: 38763723 [Abstract] [Full Text] [Related]
20. Development and evaluation of well-tolerated and tumor-penetrating polymeric micelle-based dry powders for inhaled anti-cancer chemotherapy. Rosière R, Van Woensel M, Mathieu V, Langer I, Mathivet T, Vermeersch M, Amighi K, Wauthoz N. Int J Pharm; 2016 Mar 30; 501(1-2):148-59. PubMed ID: 26850313 [Abstract] [Full Text] [Related] Page: [Next] [New Search]