These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


323 related items for PubMed ID: 26235712

  • 1. Construction and in vitro characterization of three-dimensional silk fibroinchitosan scaffolds.
    Tong S, Xu DP, Liu ZM, Wang XK.
    Dent Mater J; 2015; 34(4):475-84. PubMed ID: 26235712
    [Abstract] [Full Text] [Related]

  • 2. Synthesis of the New-Type Vascular Endothelial Growth Factor-Silk Fibroin-Chitosan Three-Dimensional Scaffolds for Bone Tissue Engineering and In Vitro Evaluation.
    Tong S, Xu DP, Liu ZM, Du Y, Wang XK.
    J Craniofac Surg; 2016 Mar; 27(2):509-15. PubMed ID: 26890455
    [Abstract] [Full Text] [Related]

  • 3. [Preparation of silk fibroin-chitosan scaffolds and their properties].
    Zhang P, Wang W.
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Dec; 27(12):1517-22. PubMed ID: 24640377
    [Abstract] [Full Text] [Related]

  • 4. Characterization of Silk Fibroin/Chitosan 3D Porous Scaffold and In Vitro Cytology.
    Zeng S, Liu L, Shi Y, Qiu J, Fang W, Rong M, Guo Z, Gao W.
    PLoS One; 2015 Dec; 10(6):e0128658. PubMed ID: 26083846
    [Abstract] [Full Text] [Related]

  • 5. Silk fibroin/collagen and silk fibroin/chitosan blended three-dimensional scaffolds for tissue engineering.
    Sun K, Li H, Li R, Nian Z, Li D, Xu C.
    Eur J Orthop Surg Traumatol; 2015 Feb; 25(2):243-9. PubMed ID: 25118870
    [Abstract] [Full Text] [Related]

  • 6. Synthesis of and in vitro and in vivo evaluation of a novel TGF-β1-SF-CS three-dimensional scaffold for bone tissue engineering.
    Tong S, Xu DP, Liu ZM, Du Y, Wang XK.
    Int J Mol Med; 2016 Aug; 38(2):367-80. PubMed ID: 27352815
    [Abstract] [Full Text] [Related]

  • 7. Nano-composite of silk fibroin-chitosan/Nano ZrO2 for tissue engineering applications: fabrication and morphology.
    Teimouri A, Ebrahimi R, Emadi R, Beni BH, Chermahini AN.
    Int J Biol Macromol; 2015 May; 76():292-302. PubMed ID: 25709014
    [Abstract] [Full Text] [Related]

  • 8. Production of Composite Scaffold Containing Silk Fibroin, Chitosan, and Gelatin for 3D Cell Culture and Bone Tissue Regeneration.
    Li J, Wang Q, Gu Y, Zhu Y, Chen L, Chen Y.
    Med Sci Monit; 2017 Nov 08; 23():5311-5320. PubMed ID: 29114098
    [Abstract] [Full Text] [Related]

  • 9. Optimization and evaluation of silk fibroin-chitosan freeze-dried porous scaffolds for cartilage tissue engineering application.
    Vishwanath V, Pramanik K, Biswas A.
    J Biomater Sci Polym Ed; 2016 Nov 08; 27(7):657-74. PubMed ID: 26830046
    [Abstract] [Full Text] [Related]

  • 10. Preparation of chitosan/silk fibroin/hydroxyapatite porous scaffold and its characteristics in comparison to bi-component scaffolds.
    Qi XN, Mou ZL, Zhang J, Zhang ZQ.
    J Biomed Mater Res A; 2014 Feb 08; 102(2):366-72. PubMed ID: 23533149
    [Abstract] [Full Text] [Related]

  • 11. Preparation and in vitro characterization of biomorphic silk fibroin scaffolds for bone tissue engineering.
    Qian J, Suo A, Jin X, Xu W, Xu M.
    J Biomed Mater Res A; 2014 Sep 08; 102(9):2961-71. PubMed ID: 24123779
    [Abstract] [Full Text] [Related]

  • 12. Genipin-crosslinked silk fibroin/hydroxybutyl chitosan nanofibrous scaffolds for tissue-engineering application.
    Zhang K, Qian Y, Wang H, Fan L, Huang C, Yin A, Mo X.
    J Biomed Mater Res A; 2010 Dec 01; 95(3):870-81. PubMed ID: 20824649
    [Abstract] [Full Text] [Related]

  • 13. Membrane-reinforced three-dimensional electrospun silk fibroin scaffolds for bone tissue engineering.
    Yang SY, Hwang TH, Che L, Oh JS, Ha Y, Ryu W.
    Biomed Mater; 2015 Jun 24; 10(3):035011. PubMed ID: 26106926
    [Abstract] [Full Text] [Related]

  • 14. Fabrication and characterization of porous tubular silk fibroin scaffolds.
    Min S, Gao X, Liu L, Tian L, Zhu L, Zhang H, Yao J.
    J Biomater Sci Polym Ed; 2009 Jun 24; 20(13):1961-74. PubMed ID: 19793450
    [Abstract] [Full Text] [Related]

  • 15. Natural biomacromolecule based composite scaffolds from silk fibroin, gelatin and chitosan toward tissue engineering applications.
    Asadpour S, Kargozar S, Moradi L, Ai A, Nosrati H, Ai J.
    Int J Biol Macromol; 2020 Jul 01; 154():1285-1294. PubMed ID: 31733251
    [Abstract] [Full Text] [Related]

  • 16. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation.
    Paşcu EI, Cahill PA, Stokes J, McGuinness GB.
    J Biomater Appl; 2016 Apr 01; 30(9):1334-49. PubMed ID: 26767394
    [Abstract] [Full Text] [Related]

  • 17. Silk fibroin/chitosan scaffold with tunable properties and low inflammatory response assists the differentiation of bone marrow mesenchymal stem cells.
    Li DW, Lei X, He FL, He J, Liu YL, Ye YJ, Deng X, Duan E, Yin DC.
    Int J Biol Macromol; 2017 Dec 01; 105(Pt 1):584-597. PubMed ID: 28802849
    [Abstract] [Full Text] [Related]

  • 18. In vitro culture of hFOB1.19 osteoblast cells on TGF-β1-SF-CS three-dimensional scaffolds.
    Tong S, Xue L, Xu DP, Liu ZM, Du Y, Wang XK.
    Mol Med Rep; 2016 Jan 01; 13(1):181-7. PubMed ID: 26530112
    [Abstract] [Full Text] [Related]

  • 19. Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: Morphological structures and biofunctionalities.
    Sangkert S, Meesane J, Kamonmattayakul S, Chai WL.
    Mater Sci Eng C Mater Biol Appl; 2016 Jan 01; 58():1138-49. PubMed ID: 26478414
    [Abstract] [Full Text] [Related]

  • 20. Silk fibroin/chitosan-hyaluronic acid versus silk fibroin scaffolds for tissue engineering: promoting cell proliferations in vitro.
    Chung TW, Chang YL.
    J Mater Sci Mater Med; 2010 Apr 01; 21(4):1343-51. PubMed ID: 20135206
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.