These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


111 related items for PubMed ID: 26235956

  • 1. Glutamatergic synapse protein composition of wild-type mice is sensitive to in utero MTHFR genotype and the timing of neonatal vigabatrin exposure.
    Zuckerman C, Blumkin E, Melamed O, Golan HM.
    Eur Neuropsychopharmacol; 2015 Oct; 25(10):1787-802. PubMed ID: 26235956
    [Abstract] [Full Text] [Related]

  • 2. Long-lasting glutamatergic modulation induced by neonatal GABA enhancement in mice.
    Melamed O, Levav-Rabkin T, Zukerman C, Clarke G, Cryan JF, Dinan TG, Grossman Y, Golan HM.
    Neuropharmacology; 2014 Apr; 79():616-25. PubMed ID: 24462620
    [Abstract] [Full Text] [Related]

  • 3. Gender-specific effect of Mthfr genotype and neonatal vigabatrin interaction on synaptic proteins in mouse cortex.
    Blumkin E, Levav-Rabkin T, Melamed O, Galron D, Golan HM.
    Neuropsychopharmacology; 2011 Jul; 36(8):1714-28. PubMed ID: 21490592
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Reelin signaling facilitates maturation of CA1 glutamatergic synapses.
    Qiu S, Weeber EJ.
    J Neurophysiol; 2007 Mar; 97(3):2312-21. PubMed ID: 17229826
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Increased susceptibility to mild neonatal stress in MTHFR deficient mice.
    Kezurer N, Galron D, Golan HM.
    Behav Brain Res; 2013 Sep 15; 253():240-52. PubMed ID: 23896051
    [Abstract] [Full Text] [Related]

  • 8. Corticosterone treatment during adolescence induces down-regulation of reelin and NMDA receptor subunit GLUN2C expression only in male mice: implications for schizophrenia.
    Buret L, van den Buuse M.
    Int J Neuropsychopharmacol; 2014 Aug 15; 17(8):1221-32. PubMed ID: 24556017
    [Abstract] [Full Text] [Related]

  • 9. Adult brain and behavioral pathological markers of prenatal immune challenge during early/middle and late fetal development in mice.
    Meyer U, Nyffeler M, Yee BK, Knuesel I, Feldon J.
    Brain Behav Immun; 2008 May 15; 22(4):469-86. PubMed ID: 18023140
    [Abstract] [Full Text] [Related]

  • 10. MTHFR deficiency or reduced intake of folate or choline in pregnant mice results in impaired short-term memory and increased apoptosis in the hippocampus of wild-type offspring.
    Jadavji NM, Deng L, Malysheva O, Caudill MA, Rozen R.
    Neuroscience; 2015 Aug 06; 300():1-9. PubMed ID: 25956258
    [Abstract] [Full Text] [Related]

  • 11. Single and combined effects of prenatal immune activation and peripubertal stress on parvalbumin and reelin expression in the hippocampal formation.
    Giovanoli S, Weber L, Meyer U.
    Brain Behav Immun; 2014 Aug 06; 40():48-54. PubMed ID: 24859043
    [Abstract] [Full Text] [Related]

  • 12. GABAergic dysfunction in mGlu7 receptor-deficient mice as reflected by decreased levels of glutamic acid decarboxylase 65 and 67kDa and increased reelin proteins in the hippocampus.
    Wierońska JM, Brański P, Siwek A, Dybala M, Nowak G, Pilc A.
    Brain Res; 2010 Jun 02; 1334():12-24. PubMed ID: 20353761
    [Abstract] [Full Text] [Related]

  • 13. A stereological comparison of GAD67 and reelin expression in the hippocampal stratum oriens of offspring from two mouse models of maternal inflammation during pregnancy.
    Harvey L, Boksa P.
    Neuropharmacology; 2012 Mar 02; 62(4):1767-76. PubMed ID: 22178614
    [Abstract] [Full Text] [Related]

  • 14. Impaired synaptogenesis and long-term modulation of behavior following postnatal elevation of GABA levels in mice.
    Levav T, Wirthaim O, Weiss R, Grossman Y, Golan H.
    Neuropharmacology; 2008 Feb 02; 54(2):387-98. PubMed ID: 18063001
    [Abstract] [Full Text] [Related]

  • 15. Dietary methyl donor deficiency during pregnancy in rats shapes learning and anxiety in offspring.
    Konycheva G, Dziadek MA, Ferguson LR, Krägeloh CU, Coolen MW, Davison M, Breier BH.
    Nutr Res; 2011 Oct 02; 31(10):790-804. PubMed ID: 22074804
    [Abstract] [Full Text] [Related]

  • 16. Cognitive disruption and altered hippocampus synaptic function in Reelin haploinsufficient mice.
    Qiu S, Korwek KM, Pratt-Davis AR, Peters M, Bergman MY, Weeber EJ.
    Neurobiol Learn Mem; 2006 May 02; 85(3):228-42. PubMed ID: 16376115
    [Abstract] [Full Text] [Related]

  • 17. Altered N-methyl-D-aspartate receptor function in reelin heterozygous mice: male-female differences and comparison with dopaminergic activity.
    van den Buuse M, Halley P, Hill R, Labots M, Martin S.
    Prog Neuropsychopharmacol Biol Psychiatry; 2012 Jun 01; 37(2):237-46. PubMed ID: 22361156
    [Abstract] [Full Text] [Related]

  • 18. Bidirectional Homeostatic Regulation of a Depression-Related Brain State by Gamma-Aminobutyric Acidergic Deficits and Ketamine Treatment.
    Ren Z, Pribiag H, Jefferson SJ, Shorey M, Fuchs T, Stellwagen D, Luscher B.
    Biol Psychiatry; 2016 Sep 15; 80(6):457-468. PubMed ID: 27062563
    [Abstract] [Full Text] [Related]

  • 19. Impaired Src signaling and post-synaptic actin polymerization in Alzheimer's disease mice hippocampus--linking NMDA receptors and the reelin pathway.
    Mota SI, Ferreira IL, Valero J, Ferreiro E, Carvalho AL, Oliveira CR, Rego AC.
    Exp Neurol; 2014 Nov 15; 261():698-709. PubMed ID: 25128699
    [Abstract] [Full Text] [Related]

  • 20. Developmental genetic profiles of glutamate receptor system, neuromodulator system, protector of normal tissue and mitochondria, and reelin in marmoset cortex: potential molecular mechanisms of pruning phase of spines in primate synaptic formation process during the end of infancy and prepuberty (II).
    Sasaki T, Oga T, Nakagaki K, Sakai K, Sumida K, Hoshino K, Miyawaki I, Saito K, Suto F, Ichinohe N.
    Biochem Biophys Res Commun; 2014 Feb 14; 444(3):307-10. PubMed ID: 24440696
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.